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Outline

• ETH and correlations of matrix elements
• From ETH to random matrices (short intermezzo)
• . . . and back to ETH
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Motivations

ETH wanted to explain why statistical mechanics applies starting
from an out-of-equilibrium condition

In this talk: need to characterise better ETH ansatz, all about
dynamics at equilibrium

Make statistical assumptions which allows to unveil structure of
correlations (link with free probability)
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General setting
Consider “generic" many-body systems (no conserved quantities,
sufficiently high T \energy). E.g.

H =
N∑

i=1

σx
i σ

x
i+1 +hz

N∑
i=1

σz
i +hx

N∑
i=1

σx
i

Physical observable e.g.:

A = 1

N

N∑
i=1

σz
i

H and A matrices of size N = 2N

Interested in the large N (thermodynamic) limit
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Properties of many-body Hamiltonians

H |Eα〉 = Eα|Eα〉
Ï Spectrum −Nemi n ≤ Eα ≤ Nemax

Ï ρ(E = Ne) =∑N
α=1δ(E −Eα) ∝ eS(E) ' eN s(e)

Ï Level spacing Eα−Eα+1 exponentially small in N
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Quantum statistical mechanics

〈A〉β =Tr
[
ρβA

]
Density matrix

ρβ = e−βH

Z
Z =

N∑
α=1

e−βEα

Ï ρ ≥ 0
Ï Trρ = 1
Ï Peaked function at some characteristic energy eβ fixed by β

ρ̃(E = Ne) =
N∑
α=1

δ (Ne −Eα)e−βEα ∝ eN (s(e)−βe)
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Dynamics

Heisenberg picture (evolution of the operators):

A(t ) = e i H t Ae−i H t =∑
αβ

e i (Eα−Eβ)t Aαβ|Eα〉〈Eβ|

Aαβ = 〈Eα|A|Eβ〉
Dynamical correlation functions:

Tr
[
ρβA(t )A(0)

] =︸︷︷︸
Time translation invariance

Tr
[
ρβA(t +τ)A(τ)

]
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Eigenstate thermalization

Single eigenstates provide equilibrium statistical averages
〈Eα|A|Eα〉 varies smoothly with the energy Eα

For dynamics necessary off-diagonal matrix elements

J. Deutsch (1991), M. Srednicki (1994)
Review: D’Alessio, Kafri, Polkovnikov, Rigol (2016)

Mathematical literature on Quantum Unique Ergodicity
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Eigenstate thermalization ansatz

Aαβ =A (e)δαβ+e−N s(e)/2 fe(ω)Rαβ

E = (Eα+Eβ)/2 e = E/N ω= Eα−Eβ

Rαβ (pseudo)-random numbers

Rαβ = 0 R2
αβ

= 1

M. Srednicki (1999)
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Fictitious ensemble

Aαβ → random matrix element

Ensemble ?

Ï Small energy windows
Ï Perturb with “reasonable" small Hamiltonian H → H +εV

(Deutsch (1991)). Nearby eigenvectors extremely sensitive even to
small perturbations. Physics unchanged
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One-time correlation functions

〈A〉β =
∑
α

e−βEα

Z
Aαα ' N

∫ emax

−emi n

de
eN (s(e)−βe)

Z︸ ︷︷ ︸
peaked

A (e)︸ ︷︷ ︸
neglect exponentially
small fluctuations∑

α

→
∫

dEρ(E)
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Two-time correlation functions

〈A(t )A(0)〉β−〈A〉2
β =

1

Z

∑
α6=β

e−βEαe i (Eα−Eβ)t |Aαβ|2

−−−−→
N→∞

∫
dω e−βω/2e iωt | feβ(ω)|2

|Aαβ|2 averaged over the ensemble

Two-point function independent of correlations between different
matrix elements. Sensitive only to their variance
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Multi-point correlation functions

Cβ
4 (t1, t2, t3) =Tr

[
ρβA(t1)A(t2)A(t3)A(0)

]

Cβ
4 (t ,0, t ) Out-of-Time-Order Correlator

“quantum Lyapunov exponent"

Larkin and Ovchinikov (1969)
Maldacena, Shenker and Stanford (2016)
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Multi-point correlation functions

In the energy eigenbasis

Cβ
p (t1, . . . , tp−1) = ∑

α1,...,αp

[
e−βEα

Z
Aα1α2(t1)Aα2α3(t2) . . . Aαpα1(0)

]
For any p > 2 products of different matrix elements!
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Argument for correlations

| fe(ω)|2 Fourier transform of Cβ
2 (t )

Aαβ independent variables → all multi-point functions determined
solely by fe(ω), i.e. by Cβ

2 (t )

Unreasonable in general
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Beyond independent matrix elements

One should consider multipoint functions

AαβAβγAγδAδα

∝ f (4)
e (ω1,ω2,ω3) →Cβ

4 (t1, t2, t3)

In the same spirit as usual ETH

f (1)
e =A (e) f (2)

e (ω) = | fe(ω)|2
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Generalized ETH

Aα1α2 Aα2α3 . . . Aαnα1 = e−(n−1)N s(e) f (n)
e (ω1, . . . ,ωn−1)

for α1 6=α2 . . . 6=αn

e = 1

n

n∑
i=1

eαi ωi = Eαi −Eαi+1

+ other assumptions discussed later

Foini and Kurchan (2019)
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Random matrix behavior “on small energy scales"

A small perturbation, large compared to the level spacing will mix
nearby vectors. No change in physics

J. Deutsch (1991)

Invariance under change of basis (on small scales)
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Invariance under small rotations

Oαβ = 〈E ′
α|Eβ〉 → Banded random

unitary

Let’s go simpler → full rotational
invariance P (A) =P (U † AU )
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Free cumulants

N 3 Aα1α2 Aα2α3 Aα3α4 Aα4α1 = κ4

for α1 6=α2 6=α3 6=α4

B. Collins, J. A. Mingo, P. Śniady, R. Speicher, arXiv:math/0606431 (2006)
Maillard et al, J. Stat Mech. (2019)
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Diagrams

E(G) = N V −1 Aα1α2 Aα2α3 Aα3α4 Aα4α1

To compute moments only cactus matter
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A cactus

(of high order . . .)
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Cactus diagrams

E(GCactus) =
#loops∏

i=1

κni

Maillard et al, J. Stat Mech. (2019)
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Invariance under small rotations

Ï Only diagrams which contain cycles survive (phases have to
cancel)

Ï Structure in energy
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Generalized ETH

Aα1α2 Aα2α3 . . . Aαnα1 = e−(n−1)N s(e) f (n)
e (ω1, . . . ,ωn−1)

for α1 6=α2 . . . 6=αn

+ other assumptions. Which ones?

Foini and Kurchan (2019)
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Counting

Some assumptions on scaling of correlations

→ Keep only cactus diagrams as before and split them

Aα1α2 . . . Aαk−1α1 Aα1αk+1 . . . Aαnα1 = Aα1α2 . . . Aαk−1α1 Aα1αk+1 . . . Aαnα1
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Multi-point correlation functions

In the energy eigenbasis

Cβ
4 (t1, . . . , t3) =Tr

[
e−βH

Z
A(t1)A(t2)A(t3)A(0)

]

= ∑
α1,...,α4

[
e−βEα1

Z
A(t1)α1α2 A(t2)α2α3 A(t3)α3α4 A(0)α4α1

]
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Cactus diagrams and non-crossing partitions

Ï Each edge carries an index of time (as different matrices)
Ï ! No cyclic invariance
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Moments and cumulants

Cβ
n (t1, . . . , tn−1,0) = 1

Z
Tr

[
e−βH A(t1) . . . A(tn−1)A(0)

]
κ
β
n(t1, . . . , tn−1,0) = 1

Z

∑
α1 6=α2 6=... 6=αn

e−βEα1 A(t1)α1α2 . . . A(tn−1)αn−1αn A(0)αnα1
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An example

From FP it is immediate to find the following decomposition:

〈A(t1)A(t2)A(t3)A(0)〉β = κβ4 (t1, t2, t3)

+κβ2 (t1 − t2)κβ2 (t3)+κβ2 (t2 − t3)κβ2 (t1)

(assuming 〈A〉β = 0)
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Free cumulants and ETH

κ
β
n(t1, . . . , tn−1,0) = 1

Z

∑
α1 6=α2 6=... 6=αn

e−βEα1 A(t1)α1α2 . . . A(0)αnα1

=
∫

dω1 . . .dωn−1e i~ω·~t e−β~ω·~ln f (n)
εβ

(ω1, . . . ,ωn−1)

~ln = (
n−1

n , . . . , 1
n

)
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Conclusions

• Propose a (simple) ansatz able to account for correlations
between matrix elements. Relevant for multi-point functions

• Recognise importance of free probability in connection with
quantum correlation functions (see Denis’s talk)
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