Fluctuations in the optimal matching problem

Martin Huesmann

IRS 2023

joint work with Michael Goldman

The optimal transport problem

Given $\mu, \nu \in \mathcal{P}(X)$, a cost function $c : X \times X \to \mathbb{R}$ the optimal transport problem is

$$P_c(\mu,\nu) := \inf_{q \in \mathsf{Cpl}(\mu,\nu)} \int c(x,y) \, dq(x,y),$$

where $Cpl(\mu, \nu) = \{q \in \mathcal{P}(X \times X) : q(A \times X) = \mu(A), q(X \times A) = \nu(A)\}.$

The optimal transport problem

Given $\mu, \nu \in \mathcal{P}(X)$, a cost function $c : X \times X \to \mathbb{R}$ the optimal transport problem is

$$P_c(\mu,\nu) := \inf_{q \in \mathsf{Cpl}(\mu,\nu)} \int c(x,y) \, dq(x,y),$$

where $\operatorname{Cpl}(\mu, \nu) = \{q \in \mathcal{P}(\mathsf{X} \times \mathsf{X}) : q(A \times \mathsf{X}) = \mu(A), q(\mathsf{X} \times A) = \nu(A)\}.$

For (X, d) metric space, $c = d^p$, $p \ge 1$,

$$W^p_p(\mu,\nu) := P_c(\mu,\nu)$$

is called the L^p (Kantorovich)-Wasserstein distance.

Martin Huesmann

The optimal matching problem ...

... is the optimal transport problem on \mathbb{R}^d , with $c(x, y) = |x - y|^p$, between $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ and μ , where $(X_i)_{i=1}^n$ are iid with law μ .

We concentrate on the model case: $\mu = \operatorname{Leb}_{\mid [0,1]^d}$.

The optimal matching problem...

... is the optimal transport problem on \mathbb{R}^d , with $c(x, y) = |x - y|^p$, between $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ and μ , where $(X_i)_{i=1}^n$ are iid with law μ .

We concentrate on the model case: $\mu = \text{Leb}_{|[0,1]^d}$.

The optimal matching problem...

... is the optimal transport problem on \mathbb{R}^d , with $c(x, y) = |x - y|^p$, between $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ and μ , where $(X_i)_{i=1}^n$ are iid with law μ .

We concentrate on the model case: $\mu = \operatorname{Leb}_{\mid [0,1]^d}$.

- wide interest e.g. Computer science (Ajtai et al. '84), probability (Talagrand since '92), analysis (Ambrosio since '16), physics (Parisi since '14), statistics and many (!) more
- various variants: bipartite matching, Markov chains, occupation measures, entropic optimal transport...

For model case $\mu = \operatorname{Leb}_{\mid [0,1]^d}$ and $p \ge 1$:

$$\mathbb{E}W_p^p\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i},\mu\right) \sim \left\{$$

.

For model case $\mu = \text{Leb}_{\mid [0,1]^d}$ and $p \ge 1$:

$$\mathbb{E}W_p^p\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}, \mu\right) \sim \begin{cases}\\\frac{1}{n^{p/d}}\end{cases}$$

.

For model case $\mu = \text{Leb}_{[0,1]^d}$ and $p \ge 1$: $\mathbb{E}W^p \left(\frac{1}{2}\sum_{i=1}^n \delta_{i} x_i \mu_i\right) \propto \int_{\mathbb{C}^d} \int_{\mathbb{C}^d} \nabla_{i} x_i \mu_i = 0$

$$\mathbb{E}W_p^p\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}, \mu\right) \sim \begin{cases}\\\\\frac{1}{n^{p/d}} & d \ge 3\end{cases}$$

.

For model case $\mu = \operatorname{Leb}_{\mid [0,1]^d}$ and $p \ge 1$:

$$\mathbb{E}W_p^p\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}, \mu\right) \sim \begin{cases} \frac{1}{n^{p/2}} & d=1\\ \left(\frac{\log n}{n}\right)^{p/2} & d=2\\ \frac{1}{n^{p/d}} & d\geq 3 \end{cases}$$

For model case
$$\mu = \operatorname{Leb}_{\mid [0,1]^d}$$
 and $p \ge 1$:

$$\mathbb{E}W_p^p\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}, \mu\right) \sim \begin{cases} \frac{1}{n^{p/2}} & d=1\\ \left(\frac{\log n}{n}\right)^{p/2} & d=2\\ \frac{1}{n^{p/d}} & d\ge 3\end{cases}$$

 \rightarrow *d* = 2 critical dimension

For model case
$$\mu = \operatorname{Leb}_{\mid [0,1]^d}$$
 and $p \ge 1$:

$$\mathbb{E}W_p^p\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}, \mu\right) \sim \begin{cases} \frac{1}{n^{p/2}} & d=1\\ \left(\frac{\log n}{n}\right)^{p/2} & d=2\\ \frac{1}{n^{p/d}} & d\ge 3 \end{cases}$$

 \rightarrow *d* = 2 critical dimension

fix cube of sidelenght a, # pts: $a^d \pm a^{d/2}$, surface area: a^{d-1}

Mar	tin	 IPSI	ma	nn
TV TU		 0.5		

For model case
$$\mu = \operatorname{Leb}_{\mid [0,1]^d}$$
 and $p \ge 1$:

$$\mathbb{E}W_p^p\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}, \mu\right) \sim \begin{cases} \frac{1}{n^{p/2}} & d=1\\ \left(\frac{\log n}{n}\right)^{p/2} & d=2\\ \frac{1}{n^{p/d}} & d\ge 3\end{cases}$$

 \rightarrow *d* = 2 critical dimension

For model case
$$\mu = \operatorname{Leb}_{\mid [0,1]^d}$$
 and $p \ge 1$:

$$\mathbb{E}W_p^p\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}, \mu\right) \sim \begin{cases} \frac{1}{n^{p/2}} & d=1\\ \left(\frac{\log n}{n}\right)^{p/2} & d=2\\ \frac{1}{n^{p/d}} & d\ge 3\end{cases}$$

 \rightarrow *d* = 2 critical dimension

Refined statements:

- Convergence of rescaled cost?
- Mesoscopic behaviour?
- Thermodynamic limit?

• ...

d = 1 and p > 1

- Convergence of rescaled cost: many explicit results, see Bobkov-Ledoux '19
- Mesoscopic behaviour:
- Thermodynamic limit:

- Convergence of rescaled cost: many explicit results, see Bobkov-Ledoux '19
- Mesoscopic behaviour: $(\sqrt{n}(X^{(i)} \frac{i}{n}))_i$ converges to a Brownian Bridge, del Barrio-Giné-Utzet '05
- Thermodynamic limit:

- Convergence of rescaled cost: many explicit results, see Bobkov-Ledoux '19
- Mesoscopic behaviour: $(\sqrt{n}(X^{(i)} \frac{i}{n}))_i$ converges to a Brownian Bridge, del Barrio-Giné-Utzet '05
- Thermodynamic limit: would need to control quantities of the type $n(X^{(i)} \frac{i}{n}) \dots$

Previous results for $d \ge 2$

d > 2:

- Rescaled cost: $\lim_{n\to\infty} n^{p/d} \mathbb{E} W_p^p \left(\frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \mu\right)$ exists (for 2p < d Barthe & Bordenave '13, Dereich & Scheutzow & Schottstedt '13, for $p \ge 1$ Goldman & Trevisan '20)
- Thermodynamic limit: there is a natural candidate, the unique stationary optimal coupling between Lebesgue and Poisson on ℝ^d (Huesmann & Sturm '13)

Previous results for $d \ge 2$

d > 2:

- Rescaled cost: $\lim_{n\to\infty} n^{p/d} \mathbb{E} W_p^p \left(\frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \mu\right)$ exists (for 2p < d Barthe & Bordenave '13, Dereich & Scheutzow & Schottstedt '13, for $p \ge 1$ Goldman & Trevisan '20)
- Thermodynamic limit: there is a natural candidate, the unique stationary optimal coupling between Lebesgue and Poisson on R^d (Huesmann & Sturm '13)

d = 2:

- Rescaled cost: $\lim_{n\to\infty} \frac{n}{\log n} \mathbb{E} W_2^2 \left(\frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \mu\right) = \frac{1}{4\pi}$ (Ambrosio & Stra & Trevisan '19)
- Thermodynamic limit: for p = 2 there is no invariant matching (H. & Mattesini & Otto '21); existence of invariant matching for p < 1 (Holroyd & Janson & Wästlund '22)

Previous results for $d \ge 2$

d > 2:

- Rescaled cost: $\lim_{n\to\infty} n^{p/d} \mathbb{E} W_p^p \left(\frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \mu\right)$ exists (for 2p < d Barthe & Bordenave '13, Dereich & Scheutzow & Schottstedt '13, for $p \ge 1$ Goldman & Trevisan '20)
- Thermodynamic limit: there is a natural candidate, the unique stationary optimal coupling between Lebesgue and Poisson on R^d (Huesmann & Sturm '13)

d = 2:

- Rescaled cost: $\lim_{n\to\infty} \frac{n}{\log n} \mathbb{E}W_2^2\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}, \mu\right) = \frac{1}{4\pi}$ (Ambrosio & Stra & Trevisan '19)
- Thermodynamic limit: for p = 2 there is no invariant matching (H. & Mattesini & Otto '21); existence of invariant matching for p < 1 (Holroyd & Janson & Wästlund '22)

Write $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, optimal coupling for $W_2^2(\mu_n, \mu)$ is $(\nabla \psi, \mathsf{Id})_{\#}\mu$;

Write $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, optimal coupling for $W_2^2(\mu_n, \mu)$ is $(\nabla \psi, \mathsf{Id})_{\#}\mu$; (Formal) change of variable yields

 $\mu_n \det \nabla^2 \psi = 1$

Write $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, optimal coupling for $W_2^2(\mu_n, \mu)$ is $(\nabla \psi, \mathsf{Id})_{\#}\mu$; (Formal) change of variable yields

$$\mu_n \det \nabla^2 \psi = 1$$

and since $\mu_n \approx 1$ we expect $\nabla \psi(x) = x + \nabla \phi(x)$ s.t. $\nabla^2 \psi = \mathsf{Id} + \nabla^2 \phi$

Write $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, optimal coupling for $W_2^2(\mu_n, \mu)$ is $(\nabla \psi, \mathsf{Id})_{\#}\mu$; (Formal) change of variable yields

$$\mu_{\textit{n}} \det \nabla^2 \psi = 1$$

and since $\mu_n \approx 1$ we expect $\nabla \psi(x) = x + \nabla \phi(x)$ s.t. $\nabla^2 \psi = \mathsf{Id} + \nabla^2 \phi$

$$ightarrow \ \mu_n(1+\Delta\phi)=1 \quad ext{ s.t. with } \mu_npprox 1 \quad \Delta\phi=1-\mu_n.$$

This ansatz leads to $\nabla \phi(x) = \nabla \psi(x) - x$ (displacement of coupling) and hence $\int |\nabla \phi|^2 \approx W_2^2(\mu_n, \mu) \rightsquigarrow$ several explicit predictions

Write $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, optimal coupling for $W_2^2(\mu_n, \mu)$ is $(\nabla \psi, \mathsf{Id})_{\#}\mu$; (Formal) change of variable yields

$$\mu_{\textit{n}} \det \nabla^2 \psi = 1$$

and since $\mu_n \approx 1$ we expect $\nabla \psi(x) = x + \nabla \phi(x)$ s.t. $\nabla^2 \psi = \mathsf{Id} + \nabla^2 \phi$

This ansatz leads to $\nabla \phi(x) = \nabla \psi(x) - x$ (displacement of coupling) and hence $\int |\nabla \phi|^2 \approx W_2^2(\mu_n, \mu) \rightsquigarrow$ several explicit predictions

Ambrosio & Stra & Trevisan '19, Ambrosio & Glaudo & Trevisan '19: true on macroscopic level for cost and transport map!!

Goldman & Huesmann & Otto '21: quantitative, deterministic version from macro down to micro scale

Martin Huesmann

Write $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$, optimal coupling for $W_2^2(\mu_n, \mu)$ is $(\nabla \psi, \mathsf{Id})_{\#}\mu$; (Formal) change of variable yields

$$\mu_{\textit{n}} \det \nabla^2 \psi = 1$$

and since $\mu_n \approx 1$ we expect $\nabla \psi(x) = x + \nabla \phi(x)$ s.t. $\nabla^2 \psi = \mathsf{Id} + \nabla^2 \phi$

$$ightarrow \ \mu_n(1+\Delta\phi)=1$$
 s.t. with $\mu_npprox 1$ $\Delta\phi=1-\mu_n.$

This ansatz leads to $\nabla \phi(x) = \nabla \psi(x) - x$ (displacement of coupling) and hence $\int |\nabla \phi|^2 \approx W_2^2(\mu_n, \mu) \rightsquigarrow$ several explicit predictions

Ambrosio & Stra & Trevisan '19, Ambrosio & Glaudo & Trevisan '19: true on macroscopic level for cost and transport map!!

Goldman & Huesmann & Otto '21: quantitative, deterministic version from macro down to micro scale

Martin Huesmann

For p = 2 and $d \in \{2,3\}$ on all mesoscopic scales the averaged displacement of the optimal matching converges to a curl-free GFF.

Main result – convergence on mesoscopic scales X_1, X_2, \ldots iid uniform on torus $Q_L = [-L/2, L/2]^d$

$$\mu^{R,L} = \frac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : L^2 \text{ opt. cpl. } \mu^{R,L} \leftrightarrow \text{Leb}_{|Q_L|}$$

Main result – convergence on mesoscopic scales X_1, X_2, \ldots iid uniform on torus $Q_L = [-L/2, L/2]^d$

$$\mu^{R,L} = \frac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : L^2 \text{ opt. cpl. } \mu^{R,L} \leftrightarrow \text{Leb}_{|Q_L|}$$

Define the distribution $Z^{R,L}$ by

$$Z^{R,L}(f) = R^{\frac{d}{2}} \int f(x) \cdot (y-x) \pi^{R,L}(dx,dy).$$

If T is optimal map, and $A_i = T^{-1}(X_i)$ then

$$Z^{R,L} = R^{\frac{d}{2}} \sum_{i=1}^{(RL)^d} \left(\int_{A_i} (y - X_i) dy \right) \delta_{X_i}.$$

Main result – convergence on mesoscopic scales X_1, X_2, \ldots iid uniform on torus $Q_L = [-L/2, L/2]^d$

$$\mu^{R,L} = \frac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : L^2 \text{ opt. cpl. } \mu^{R,L} \leftrightarrow \text{Leb}_{|Q_L|}$$

Define the distribution $Z^{R,L}$ by

$$Z^{R,L}(f) = R^{\frac{d}{2}} \int f(x) \cdot (y-x) \pi^{R,L}(dx,dy).$$

If T is optimal map, and $A_i = T^{-1}(X_i)$ then

$$Z^{R,L} = R^{\frac{d}{2}} \sum_{i=1}^{(RL)^d} \left(\int_{A_i} (y - X_i) dy \right) \delta_{X_i}.$$

Let W be white noise and (formally) define $\nabla \Psi$ via

$$\Delta \Psi = W.$$

$$\begin{split} \mu^{R,L} &= \frac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : \text{opt. cpl.}, \quad \Delta \Psi = W, \\ Z^{R,L}(f) &= R^{\frac{d}{2}} \int f(x) \cdot (y-x) d\pi^{R,L} \end{split}$$

Theorem (Goldman & H. '21)

For d = 3, and any sequences $R, L \rightarrow \infty$

$$Z^{R,L} \to \nabla \Psi$$

weakly in some negative Sobolev space.

$$\begin{split} \mu^{R,L} &= \frac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : \text{opt. cpl.}, \quad \Delta \Psi = W, \\ Z^{R,L}(f) &= R^{\frac{d}{2}} \int f(x) \cdot (y-x) d\pi^{R,L} \end{split}$$

Theorem (Goldman & H. '21)

For d = 3, and any sequences $R, L \rightarrow \infty$

$$Z^{R,L} o \nabla \Psi$$

weakly in some negative Sobolev space.

macro scale: $L = 1, R \rightarrow \infty$ micro scale: $L \rightarrow \infty, R = 1$ meso scale: $L, R \rightarrow \infty$

$$\begin{split} \mu^{R,L} &= \frac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : \text{opt. cpl.}, \quad \nabla \Psi, \\ Z^{R,L}(f) &= R^{\frac{d}{2}} \int f(x) \cdot (y-x) d\pi^{R,L} \end{split}$$

$$\begin{split} \mu^{R,L} &= \frac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : \text{opt. cpl.}, \quad \nabla \Psi - \nabla \Psi_1, \\ Z^{R,L}(f) &= R^{\frac{d}{2}} \int f(x) \cdot (y-x) d\pi^{R,L} \end{split}$$

$$\mu^{R,L} = rac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : \mathsf{opt. cpl.}, \quad \nabla \Psi - \nabla \Psi_1,$$

 $Z^{R,L}(f) = R^{rac{d}{2}} \int f(x) \cdot (y - x) d\pi^{R,L}$

 $W^{R,L}=R^{rac{d}{2}}(\mu^{R,L}-1)$ let $u^{R,L}$ be Q_L -periodic solution to

$$\Delta u = W^{R,L}, \quad \int_{Q_L} u = 0.$$

Put $\nabla u_1^{R,L} = \int \eta \nabla u^{R,L}$, η smooth cutoff.

$$\begin{split} \mu^{R,L} &= \frac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : \text{opt. cpl.}, \quad \nabla \Psi - \nabla \Psi_1, \\ Z^{R,L}(f) &= R^{\frac{d}{2}} \int f(x)(y-x) d\pi^{R,L} \\ W^{R,L} &= R^{\frac{d}{2}}(\mu^{R,L} - 1), \quad \Delta u^{R,L} = W^{R,L}, \quad \nabla u_1^{R,L} = \int \eta \nabla u^{R,L} \end{split}$$

$$\begin{split} \mu^{R,L} &= \frac{1}{R^d} \sum_{i=1}^{(RL)^d} \delta_{X_i}, \quad \pi^{R,L} : \text{opt. cpl.}, \quad \nabla \Psi - \nabla \Psi_1, \\ Z^{R,L}(f) &= R^{\frac{d}{2}} \int f(x)(y-x) d\pi^{R,L} \\ W^{R,L} &= R^{\frac{d}{2}}(\mu^{R,L}-1), \quad \Delta u^{R,L} = W^{R,L}, \quad \nabla u_1^{R,L} = \int \eta \nabla u^{R,L} \end{split}$$

Theorem (GH '21)

For d = 2, and any sequences $R, L \rightarrow \infty$

$$Z^{R,L} - \mu^{R,L} \nabla u_1^{R,L} o \nabla \Psi - \nabla \Psi_1$$

weakly in some negative Sobolev space. Moreover, for any $p \ge 2$

$$W_p\left(\mathsf{Law}(
abla u_1^{R,L}),\mathcal{N}(0,\sigma^2\mathsf{Id})
ight)\lesssim rac{1}{R\log^{rac{1}{p}}L},$$

with $\sigma^2 \sim \log L$.

Idea of the proof:

$$\mu_n \det
abla^2 \psi = 1 \quad \stackrel{ ext{pathwise}}{pprox} \quad \Delta u = 1 - \mu_n \quad \stackrel{ ext{in law}}{pprox} \quad \Delta \Psi = W$$

Idea of the proof:

$$\mu_n \det
abla^2 \psi = 1 \quad \stackrel{ ext{pathwise}}{pprox} \quad \Delta u = 1 - \mu_n \quad \stackrel{ ext{in law}}{pprox} \quad \Delta \Psi = W$$

Step 1: Linear part.

Recall:
$$W^{R,L} = R^{\frac{d}{2}}(\mu^{R,L} - 1), \quad \Delta u^{R,L} = W^{R,L}$$

W white noise, $\Delta \Psi = W$

Show: $\nabla u^{R,L} \rightarrow \nabla \Psi$ in law

Step 2: Quantitative linearization.

Show: average displacement under $\pi^{R,L}$ is close to $\nabla u^{R,L}$

Approach: a) deterministic estimate b) stochastic input to check assumption of analytic estimate

Theorem (Goldman & H. & Otto '21)

Let $\bar{R} > 1$ and μ be positive measure s.t. $\mu(B_{\bar{R}}) = |B_{\bar{R}}|$. Assume that

$$\frac{1}{|B_R|}W_2^2(\mu_{|B_R},\kappa_R \text{Leb}_{|B_R}) \le \beta(R), \quad \forall \ R \in [1,\bar{R}]$$

Define ϕ via

$$\begin{cases} \Delta \phi = 1 - \mu & \text{ in } B_{\bar{R}} \\ \nu \cdot \nabla \phi = 0 & \text{ on } \partial B_{\bar{R}} \end{cases}$$

$$\left|\int \eta_R(x)(y-x-\int \eta_R
abla \phi) dq(x,y)
ight| \leq C rac{eta(R)}{R}, \quad C'\leq R\leq ar{R}.$$

Theorem (Goldman & H. & Otto '21)

Let $\bar{R} > 1$ and μ be positive measure s.t. $\mu(B_{\bar{R}}) = |B_{\bar{R}}|$. Assume that

$$\frac{1}{|B_R|}W_2^2(\mu_{|B_R},\kappa_R \text{Leb}_{|B_R}) \leq \beta(R), \quad \forall \ R \in [1,\bar{R}]$$

Define ϕ via

$$\begin{cases} \Delta \phi = 1 - \mu & \text{ in } B_{\bar{R}} \\ \nu \cdot \nabla \phi = 0 & \text{ on } \partial B_{\bar{R}} \end{cases}$$

$$\left|\int \eta_R(x)(y-x-\int \eta_R
abla \phi) dq(x,y)
ight| \leq C rac{eta(R)}{R}, \quad C'\leq R\leq ar{R}.$$

Theorem (Goldman & H. & Otto '21)

Let $\bar{R} > 1$ and μ be positive measure s.t. $\mu(B_{\bar{R}}) = |B_{\bar{R}}|$. Assume that

$$\frac{1}{|B_R|}W_2^2(\mu_{|B_R},\kappa_R \text{Leb}_{|B_R}) \le \beta(R), \quad \forall \ R \in [1,\bar{R}]$$

Define ϕ via

$$\begin{cases} \Delta \phi = 1 - \mu & \text{ in } B_{\bar{R}} \\ \nu \cdot \nabla \phi = 0 & \text{ on } \partial B_{\bar{R}} \end{cases}$$

$$\left|\int \eta_R(x)(y-x-\int \eta_R
abla \phi) dq(x,y)
ight| \leq C rac{eta(R)}{R}, \quad C'\leq R\leq ar{R}.$$

Theorem (Goldman & H. & Otto '21)

Let $\bar{R} > 1$ and μ be positive measure s.t. $\mu(B_{\bar{R}}) = |B_{\bar{R}}|$. Assume that

$$\frac{1}{|B_R|}W_2^2(\mu_{|B_R},\kappa_R \text{Leb}_{|B_R}) \le \beta(R), \quad \forall \ R \in [1,\bar{R}]$$

Define ϕ via

$$\begin{cases} \Delta \phi = 1 - \mu & \text{ in } B_{\bar{R}} \\ \nu \cdot \nabla \phi = 0 & \text{ on } \partial B_{\bar{R}} \end{cases}$$

$$\left|\int \eta_R(x)(y-x-\int \eta_R \nabla \phi) dq(x,y)\right| \leq C \frac{\beta(R)}{R}, \quad C' \leq R \leq \bar{R}.$$

Theorem (Goldman & H. & Otto '21)

Let $\bar{R} > 1$ and μ be positive measure s.t. $\mu(B_{\bar{R}}) = |B_{\bar{R}}|$. Assume that

$$\frac{1}{|B_R|}W_2^2(\mu_{|B_R},\kappa_R \text{Leb}_{|B_R}) \le \beta(R), \quad \forall \ R \in [1,\bar{R}]$$

Define ϕ via

$$\begin{cases} \Delta \phi = 1 - \mu & \text{ in } B_{\bar{R}} \\ \nu \cdot \nabla \phi = 0 & \text{ on } \partial B_{\bar{R}} \end{cases}$$

$$\left|\int \eta_R(x)(y-x-\int \eta_R
abla \phi) dq(x,y)
ight| \leq C rac{eta(R)}{R}, \quad C'\leq R\leq ar{R}.$$

Theorem (Goldman & H. & Otto '21)

Let $\bar{R} > 1$ and μ be positive measure s.t. $\mu(B_{\bar{R}}) = |B_{\bar{R}}|$. Assume that

$$\frac{1}{|B_R|}W_2^2(\mu_{|B_R},\kappa_R \text{Leb}_{|B_R}) \le \beta(R), \quad \forall \ R \in [1,\bar{R}]$$

Define ϕ via

$$\begin{cases} \Delta \phi = 1 - \mu & \text{ in } B_{\bar{R}} \\ \nu \cdot \nabla \phi = 0 & \text{ on } \partial B_{\bar{R}} \end{cases}$$

$$\left|\int \eta_R(x)(y-x-\int \eta_R
abla \phi) dq(x,y)
ight| \leq C rac{eta(R)}{R}, \quad C'\leq R\leq ar{R}.$$

Thanks for your attention

Rigorous definition of $\nabla \Psi$

For d = 3, $\nabla \Psi$ is a random distribution such that for $f \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$,

$$\mathsf{Law}(
abla \Psi(f)) = \mathcal{N}(0, \int \phi^2),$$

where ϕ is the unique $L^2(\mathbb{R}^d)$ solution to

$$-\Delta\phi=\nabla\cdot f.$$

(For d = 2 some "normalization" needed.)

Rigorous definition of $\nabla \Psi$

For d = 3, $\nabla \Psi$ is a random distribution such that for $f \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$,

$$\mathsf{Law}(\nabla \Psi(f)) = \mathcal{N}(0, \int \phi^2),$$

where ϕ is the unique $L^2(\mathbb{R}^d)$ solution to

$$-\Delta\phi=\nabla\cdot f.$$

(For d = 2 some "normalization" needed.) Formally:

$$\int
abla \Psi(f) = -\int \Psi(
abla \cdot f) = \int \Psi \Delta \phi = \int \Delta \Psi \phi = \int W \phi.$$

Relation of $\nabla \Psi$ to GFF

Let $W_{i,j}$ be independent copies of white noise, $W_i = (W_{i,1}, \ldots, W_{i,d})$ and define the vector valued GFF $h = (h_1, \ldots, h_d)$ via

$$\Delta h_i =
abla \cdot W_i, \quad 1 \leq i \leq d$$

Then we have

$$\Delta \Psi = \nabla \cdot h$$

so that $\nabla \Psi$ corresponds to the curl-free part of *h*.