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Excursions

o Let f: R? — R a stationary random field (law invariant under
translations).
e For / € R, define

Er=E&(f)={xeR?: f(x)=(}

Figure — White : excursion of a shot noise field (Credit : PhD Thesis,
Antoine Lerbet)

R. Lachieze-Rey Percolation of random fields excursions 2/26



Percolation

We are interested in the following questions :

@ Does & have (a unique) unbounded connected component(s) ?
@ s there a critical value £, 7

© Behaviour of

P(&, crosses large rectangles)

ford =/{cor b £ L7
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Poisson shot noise fields
o Let P = {x; i € N} be a homogeneous Poisson process on R2.
o Let g : R? — R? integrable

Poisson shot noise field with kernel g :

f(x):= Zg(x — x;);x € R2.

ieN

@ Continuous limit

fx)=(gx P )X

Poisson
White noise

= |Im f X) Z X —i l{Bernoulll(sz) 1}

icezd

ERE B R
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Applications

e Telecommunications, image analysis/synthesis, cognitive sciences...

Figure — Optical illusion - Credit : PNAS, 110 (17) 7080-7085 ,
https://www.youtube.com/watch?v=Qs1BXBHvReg
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https://www.youtube.com/watch?v=QslBXBHvReg

Gaussian Random Fields

The same questions have been thouroughly investigated for stationary
continuous centred Gaussian fields, i.e. random functions of the form

) =(ex W )

Gaussian
white noise

= lim Z g(i —x) x Gic
e=0 —~ ~—
iceL N(0,£2) Independent

where g is smooth and integrable
e Formally, a Gaussian centred field is a random function f such that,

VX1, ...y Xn, (F(x1),...,f(xn)) is a Gaussian vector
e The law of f is characterised by the covariance function
C(x,y) = Cov(f(x),f(y))
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Covariance property of White Noise W

e For A, B with finite measure,
Cov(W(A),W(B)) = LI(AN B) = (Lay, 1(5)) 12(re)

e For all g1, € L?(RY)

(/1dW /de> g1, 82) = /glgz.

e In particular, the covariance function of f satisfies

C(x —y) = Cov(f(x),f(y)) =(g(x =), gly —-),)
= /g(x —y)g(x —y —2)dz
=gxg(x —y)

e Some SDP functions with singular spectral measures cannot be built this
way (e.g. Gaussian Random Planar Wave with C =Bessel Function)
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Percolation of Gaussian excursions

Figure — Credit : D. Beliaev

By

Es

Figure 1. A simulation of the excursion set £ of the Bargmann-Fock field
restricted to a large square (in grey) at (i) the zero level £ = 0 (left figure),
at (ii) the level £ = 0.1 (right figure), with the connected component of greatest
area distinguished (in black). The Bargmann-Fock field is the stationary, centred
Caussian field with covariance kernel (z) = e~'*/2, Credit: Dmitry Beliaev.
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Sharp phase transition (Gaussian case)

Theorem ( Beffara & Gayet, Vanneuville, Muirhead, Rivera; 17" - 21")

Assume
f= g * Wg

is a “nice” Gaussian field. Then {&;,¢ € R} behaves like Bernoulli
percolation around the critical value :

Q (<0 :& has a unique unbounded component a.s. and

for Q a rectangle :  P(&; crosses rQ) >1— Ce “",r >0
Q /> 0: & has bounded components a.s.
© ¢ =0: &, has bounded components and
r :Barm
P(& crosses from 0B(0,r) to 9B(0,R)) < ¢ (E) ,r>0.

0< mf P(& crosses rQ) < sup]P’(cS'o crosses rQ) < 1.

v
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Assumptions (“nice” Gaussian field)

| Assumption | Field f \ Kernel g
Regularity c3 3
T
Symmetry (Axis reflectio?s,g—rotations) D 4
Positive for A,B increasing events
> >
Association P(AN B) = P(A)P(B) g=0
Asymptotic for A, B “far away” for some 3>2 -
~ < B
Independence P(AN B) = P(A)P(B) | g(x) < c(1 +[|x]))

e Increasing event
A= A(f) . I{A(f)} < 1{A(g)} for < g

Example : A(f) = {&i(f) crosses Q} for some Q C R?

e Symmetry f @) —f entails self-duality

d .
&o @) &;  (up to the boundary) = It is natural to expect ¢, = 0.
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Poisson case

@ Problem : the field is not symmetric

f(x) =Y &gly —x)
yeP
o Let Y;,i € N iid symmetric integrable variables with law p.

@ Symmetric Poisson shot noise field with kernel g and mark
distribution p :

fF(x) =) Yig(x — x);x € R,
ieEN

@ Other problem : does f(x) have a density ?
» f(x) has no density if g has compact support
» f(x) has no density if g(x) = eI,
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Assumptions (Poisson case)

Regularity c3 c3
T
Symmetry (Axis reflect:ofr)s7 5 —rotations) D*
Positive for A,B increasing events
> >
Association P(ANB) > P(A)P(B) =0
. - ” for some 8>3, for |k|<3
Asymptotlc for A, B “far away P s
~ < B—1k|
Independence P(AN B) = P(A)P(B) g(x) < c(L+[Ix]})
Self-Duality g0 @ ee v, @ _y,
- 7(0),V£(0 g(x)=cexp(—[Ix]"), a€(0,1)
DenSIty has bo(un(de)d joi(nt))density or g(x):c(l—ﬁ—“x”)*ﬁ, B>d
Concentration + | Use of OSSS inequality Law of Y; log-concave

Theorem (Lr,Muirhead 2022 [LRM22])

There is Bernoulli-like percolation for Poisson shot noise fields
satisfying these assumptions.
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Non-symmetric case : high intensity asymptotics
(d)
elet A>0, Py =

A~1/4P a Poisson homogeneous process with intensity
A — 00 & the number of points locally goes to co. We consider

AlX) =g*xWp,(x) = > &ly —x).
yEPA
e Under mild assumptions, there is a finite critical density

Lc(f\) = sup{l : P(&; has unbounded component) > 0} < oo

Figure — Shot noise field of intensity A — oo
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Limit Gaussian field

Elementary Central Limit Theorem

z Alx)—Afg

f; = >

() = 2 s 6
e Multivariate CLT (Heinrich, Schmidt '85) : Convergence of FDD
e G(x) is Gaussian centred with same covariance

Cov(A(x), Au(y)) = Cov(G(x), G(y)) = g%g(x — y).

e Question :

0e(R) = Le(G) = 0?
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Assumptions (Non-symmetric Poisson case )

] Assumption \ Field f \ Kernel g
Regularity c* c*
I
Symmetry sotropy Isotropy

(invariance to rotations)

(Positive for A,B increasing events
= >
Association) P(AN B) > P(A)P(B) g=0
; “ " for some 3>2, for |k|<3
Asymptotic for A, B “far away . s
~ <
Independence P(AN B) = P(A)P(B) 9%g(x) < c(1+|Ix])
Density (£(0),V£(0)) g(x)=c exp(—[Ix][¥), a€(0,1)

has bounded density or g(x):c(1+||x||)f,8’ B>d

R. Lachieze-Rey Percolation of random fields excursions 16 / 26



Critical value approximation

Theorem (Lr,Muirhead 21+[LRM21])
Recall

(e(B) = AV2(0() — A /g)

Assume the previous hypotheses, except positive association. Then
@ without positive association,

le(f) =0

e with positive association (< g > 0),

le(h) = O(A" 2 log(1)*/?)
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Strong Invariance principles

e Proof based on the construction of a coupling (f), g), for each A > 0.
e Historical result : Komlos, Major, Tusnady 85’, coupling of X, i.i.d

Rademacher variables with i.i.d Gaussian variables Gy, ..., G, such that
k k
P( sup Xi— ) Gi|=cln(n)+1t)< Ce
(20, 3%~ 326 > chio) 9

and the order In(n) is optimal.
e “Random measure” point of view

k n
in :(Z 5X,‘)(1[1,...,k])7 1<k<n
i=1 i=1

Similarly fy(k) =Wp, (g(k — ),k € Z2¢
G(k) =Wg(g(k — ),k € 29
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Strong invariance principle for shot noise fields
Theorem (Lr,Muirhead 21+)

For multi-indexes |a| < 4

P ( sup  |OuA(x) — BaG(x)| > A7L/2 In()\)l/zt> < CRINE exp(—ct)
x€B(0,R)

v

e Optimal up to the power of In(\) (see also Berry-Esseen inequality)

e Based on Koltchinski 94’ : There is a coupling of Py and Wg such that
for any k € Z¢,

P(|A(k) — G(k)| > tA"2In())) < Ce™

e For x € R9\ Z9, approximate f(x) by f([x]) + V(&) - (x — [x]).
e There is a coupling of N ~ Pois(\) and Z ~ N(0, 1) such that

P(IN =X —VAZ| > t) < Ce™t
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Elements of proof for the
symmetric case
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@ Box crossing estimates (RSW) stem from the work of Tassion '16
because we have :
» Positive association of the discretised field (FKG inequality on a finite
space)
» & is invariant in law under reflections and rotation by 7/2
» Spatial asymptotic independence (of f, hence of &)
@ One arm decay stems from
» Positive association of the discretised field (FKG inequality on a finite
space)
» Asymptotic independence
» Box crossing estimates (RSW)
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Proof of sharp phase transition (bounded Mills ratio case)

© First prove that P(Crossy(2R, R)) — 0 and then use bootstraping
argument

@ Proof based on a differential inequality of

0 : h— P(f>" € Crossi(2R, R))

where 7" is obtained from f° by adding h to all the marks. We prove

) o(h)(1 — o(h))
%Q(h) > Cinf2r<p<R/2{2P/R + P(fe € Army(2r, p))}

© Use of the OSSS inequality applied to randomized algorithms; after
the ideas of Duminil-Copin, Tassion, Raoufi.
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Sharp phase transition

Theorem (Lr & Muirhead 19+)
For ¢ > 0 there is ¢ > 0 such that

P(Cross(2R, R)) <1 — exp(—cR),R >0

It implies the main result :
@ For £ > 0, & has only bounded connected components a.s..
@ For £ < 0, & has a unique unbounded component a.s..

Proof : ¢/ > 0: P(Armp(1, R)) — 0.
o/ < 0 : Borel-Cantelli lemma with

Z(l — P(Crossg (2571, 2%))) < 0o = (Crossy(2€+1, 2%)) occurs for k > kg
k>1

and arrange the rectangles so that the connected components overlap.
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OSSS inequality (O'Donnell, Saks, Schramm, Servedio '05)

For an event A on a product probability space (E”, 1) and a random
algorithm determining A, (6 := P(A))

Var(l{A}) = (9 1-— Zd” .A)IM

where
o 0%(A) : Probability that coordinate i is revealed by the algorithm

o Influence of coordinate i : If(A) = P(1 ay # 1;a}) where Alis
obtained by resampling coordinate /

For percolation events, typically :

@ A is a progressive uncovering of all the connected components
touching a random crossing line (in a rectangle) / circle (in a disc)

o 0%(A) is the probability that a point i is “close” to one of these
connected components (one-arm decay is useful here)

o [/'(A) is related to df(h) for h ~ 0
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Key point

@ First remark that crossing events are monotonous in the marks

(higher mark = more chances to percolate). Hence for each i there is

a.s. a random level y; such that there is percolation for Y; > y;.

@ Assume for f¢ that mark Yj is replaced by Y; + h; for some parameter

h; € R. Then

P(Cross¢(2R, R)) :%IF’(Y + hi = yi) = uy, (vi — hi)

0
Oh;
b= P(Lay # 1ay) =P(Yi + by > yi, Y+ b < Y))
+P(Yi+hi <y, Yi+hi =)
L2P(Y; = yi — hy)

Mills
g Cuﬂac(yf - hl)

@ We end up with

Z 1;0; 0555 9(1 —0)
i >c

8h,- i 0 sup; d;

1
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