Free probabilities in action: the spectral method for phase retrieval

Marc Potters ${ }^{1}$
${ }^{1}$ Capital Fund Management, Paris

References

- Yue M. Lu and Gen Li, Phase transitions of spectral initialization for high-dimensional nonconvex estimation, 2020
- Wangyu Luo, Wael Alghamdi and Yue M. Lu, Optimal Spectral Initialization for Signal Recovery With Applications to Phase Retrieval, 2019
- MP and Jean-Philippe Bouchaud, A First Course in Random Matrix Theory, 2020 [+ Erratum].
- Federico Ricci-Tersenghi (private communication)

Phase Retrieval

Let an unknown vector $\mathbf{x} \in \mathbb{R}^{N}$ be "probed" with T vectors \mathbf{a}_{k},

$$
y_{k}=\left|\mathbf{a}_{k}^{T} \mathbf{x}\right|^{2} \text { with } k=1, \cdots, T
$$

Vectors \mathbf{x} and \mathbf{a}_{k} are real or complex.

$$
\begin{equation*}
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\operatorname{argmin}}\left(\left.\sum_{k}| | \mathbf{a}_{k}^{T} \mathbf{x}\right|^{2}-\left.y_{k}\right|^{2}\right) . \tag{1}
\end{equation*}
$$

Gradient descent needs a good starting point
Problem is phase invariant $\left(\mathbf{a}_{k} \rightarrow-\mathbf{a}_{k}\right)$, a linear method cannot work.
Use the phase invariant projectors $\mathbf{a}_{k} \mathbf{a}_{k}^{T}$

Spectral Method

$$
\begin{gather*}
\mathbf{K}=\frac{1}{T} \sum_{k=1}^{T} f\left(y_{k}\right) \mathbf{a}_{k} \mathbf{a}_{k}^{T} \tag{2}\\
\mathbf{G}_{\mathbf{K}}(z)=(z \mathbf{1}-\mathbf{K})^{-1}=\sum_{\ell=1}^{N} \frac{\mathbf{v}_{\ell} \mathbf{v}_{\ell}^{T}}{z-\lambda_{\ell}}
\end{gather*}
$$

Rotational Invariance, assume $\mathbf{x}=\mathbf{e}_{1}$

$$
\begin{gather*}
\mathbf{K}=\left(\begin{array}{cc}
c_{1} & \mathbf{w}^{T} \\
\mathbf{w} & \mathbf{M}
\end{array}\right), \\
{\left[\mathbf{G}_{\mathbf{K}}(z)\right]_{11}=\frac{1}{z-c_{1}-\mathbf{w}^{T} \mathbf{G}_{\mathbf{M}}(z) \mathbf{w}}} \tag{5}\\
\lambda_{1}=c_{1}+\mathbf{w}^{T} \mathbf{G}_{\mathbf{M}}\left(\lambda_{1}\right) \mathbf{w} \equiv h\left(\lambda_{1}\right) \tag{6}
\end{gather*}
$$

Overlap with Largest Eigenvector

$$
\begin{gather*}
{\left[\mathbf{G}_{\mathbf{K}}(z)\right]_{11}=\frac{1}{z-h(z)}} \tag{7}\\
\varrho:=\frac{\left|\mathbf{v}_{1}^{T} \mathbf{x}\right|^{2}}{|\mathbf{x}|^{2}}=\left|\mathbf{v}_{1}^{T} \mathbf{e}_{1}\right|^{2}=\lim _{z \rightarrow \lambda_{1}} \frac{z-\lambda_{1}}{z-h(z)} . \tag{8}\\
\varrho=\frac{1}{1-h^{\prime}\left(\lambda_{1}\right)} \quad \text { with } \quad \lambda_{1}=h\left(\lambda_{1}\right) \tag{9}
\end{gather*}
$$

Computing $h(z)$

$$
\begin{gather*}
c_{1}=\frac{1}{T} \sum_{k=1}^{T} f\left(y_{k}\right)\left(\left[\mathbf{a}_{k}\right]_{1}\right)^{2} \xrightarrow{T \rightarrow \infty}\left\langle f(y)\left([\mathbf{a}]_{1}\right)^{2}\right\rangle . \\
\mathbf{w}^{T} \mathbf{G}_{\mathbf{M}}(z) \mathbf{w}=\sum_{k, \ell=1}^{T} \frac{1}{T^{2}} f\left(y_{k}\right) f\left(y_{\ell}\right)\left[\mathbf{a}_{k}\right]_{1}\left[\mathbf{a}_{\ell}\right]_{1} \sum_{i, j>1}^{N}\left[\mathbf{a}_{k}\right]_{i}\left[\mathbf{G}_{\mathbf{M}}(z)\right]_{i j}\left[\mathbf{a}_{\ell}\right]_{j} \\
=\sum_{k=1}^{T} \frac{1}{T^{2}} f^{2}\left(y_{k}\right)\left(\left[\mathbf{a}_{k}\right]_{1}\right)^{2} \sum_{i, j>1}^{N}\left[\mathbf{a}_{k}\right]_{i}\left[\mathbf{G}_{\mathbf{M}}(z)\right]_{i j}\left[\mathbf{a}_{k}\right]_{j} \\
\xrightarrow{T \rightarrow \infty} q \tau\left(\frac{\mathbf{H D}_{1} \mathbf{H}^{T}}{T} \mathbf{G}_{\mathbf{M}}(z)\right), \quad q=N / T, \quad[\mathbf{H}]_{i k}=\left[\mathbf{a}_{k}\right]_{i} \quad i>1 \\
h(z)=c_{1}+q \tau\left(\mathbf{M}_{1} \mathbf{G}_{\mathbf{M}}(z)\right) \tag{13}
\end{gather*}
$$

$$
\begin{equation*}
\mathbf{M}=\frac{1}{T} \mathbf{H D}_{0} \mathbf{H}^{T} \quad \mathbf{M}_{1}=\frac{1}{T} \mathbf{H D}_{1} \mathbf{H}^{T} \quad\left[\mathbf{D}_{0}\right]_{k k}=f\left(y_{k}\right) \quad\left[\mathbf{D}_{1}\right]_{k k}=f^{2}\left(y_{k}\right)\left(\left[\mathbf{a}_{k}\right]_{1}\right)^{2} \tag{14}
\end{equation*}
$$

Free Probabilities

$$
\begin{gather*}
\mathbf{C}=\mathbf{A}+\mathbf{B} \quad \text { or } \quad \mathbf{C}=\mathbf{A}^{1 / 2} \mathbf{B A}^{1 / 2} \tag{15}\\
R_{\mathbf{C}}(g)=R_{\mathbf{A}}(g)+R_{\mathbf{B}}(g) \quad \text { or } \quad S_{\mathbf{C}}(t)=S_{\mathbf{A}}(t) S_{\mathbf{B}}(t) \tag{16}
\end{gather*}
$$

when \mathbf{A} and \mathbf{B} are free.
Large random matrices are free if their eigenvectors are unrelated. In particular if say B is a rotationally invariant matrix independent of \mathbf{A}.

$$
\begin{gather*}
T_{\mathbf{A}}(z)=\mathbf{A}(z \mathbf{1}-\mathbf{A})^{-1} \quad \mathfrak{t}_{\mathbf{A}}(z)=\tau\left(T_{\mathbf{A}}(z)\right) \tag{17}\\
S_{\mathbf{A}}(t)=\frac{t+1}{t z_{\mathbf{A}}(t)} \tag{18}
\end{gather*}
$$

Subordination Relations

$$
\mathbf{C}=\mathbf{A}^{1 / 2} \mathbf{B A}^{1 / 2}
$$

$$
\begin{gathered}
\mathfrak{t}_{\mathbf{C}}(z)=\mathfrak{t}_{\mathbf{A}}\left(S_{\mathbf{B}}\left(\mathfrak{t}_{\mathbf{C}}(z)\right) z\right) \\
\mathbb{E}\left[T_{C}(z)\right]_{\mathbf{B}}=T_{\mathbf{A}}\left(S_{\mathbf{B}}\left(\mathfrak{t}_{\mathbf{C}}(z)\right) z\right)
\end{gathered}
$$

or more explicitly

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{C}(z \mathbf{1}-\mathbf{C})^{-1}\right]_{\mathbf{B}}=\mathbf{A}(Z(z) \mathbf{1}-\mathbf{A})^{-1} \quad Z(z)=S_{\mathbf{B}}\left(\mathrm{t}_{\mathbf{C}}(z)\right) z \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{W}=\frac{1}{T} \mathbf{H H}^{T} \text { with } q=N / T \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
S_{\mathbf{W}}(t)=\frac{1}{1+q t} \quad \Longleftrightarrow \quad z t=(t+1)(1+q t) \tag{24}
\end{equation*}
$$

Colored Wisharts

$$
\begin{gather*}
\mathbf{E}_{\mathbf{C}}=\mathbf{C}^{1 / 2} \mathbf{W} \mathbf{C}^{1 / 2} \quad \text { and } \quad \mathbf{E}_{\boldsymbol{\Sigma}}=\frac{1}{T} \mathbf{H} \boldsymbol{\Sigma} \mathbf{H}^{T} \\
\mathfrak{t}_{\mathbf{E}_{\mathbf{C}}}(z)=\mathfrak{t}_{\mathbf{E}_{\mathbf{C}}}\left(\frac{z}{1+q \mathfrak{t}_{\mathbf{E}_{\mathbf{C}}}(z)}\right) \quad \text { and } \quad q \mathfrak{t}_{\mathbf{E}_{\boldsymbol{\Sigma}}}(z)=\mathfrak{t}_{\mathbf{E}_{\mathbf{C}}}\left(\frac{z}{q+q \mathfrak{t}_{\mathbf{E}_{\boldsymbol{\Sigma}}}(z)}\right) \tag{26}
\end{gather*}
$$

$\mathbb{E}\left[\mathbf{E}_{\mathbf{C}}\left(z \mathbf{1}-\mathbf{E}_{\mathbf{C}}\right)^{-1}\right]_{\mathbf{W}}=\mathbf{C}(Z(z) \mathbf{1}-\mathbf{C})^{-1} \quad$ with $Z(z)=\frac{z}{1+q \mathbf{t}_{\mathbf{E}_{\mathbf{C}}}(z)}$

Back to Phase Retrieval

$$
\begin{aligned}
& \frac{1}{N} \operatorname{Tr}\left(\frac{\mathbf{H D}_{1} \mathbf{H}^{T}}{T}\left(z \mathbf{1}-\frac{\mathbf{H D}_{0} \mathbf{H}^{T}}{T}\right)^{-1}\right)=\frac{1}{N} \operatorname{Tr}\left(\mathbf{D}_{1} \mathbf{F}(z)\right), \\
& \mathbf{F}(z)= \frac{1}{T} \mathbf{H}^{T}\left(z \mathbf{1}-\frac{\mathbf{H D}_{0} \mathbf{H}^{T}}{T}\right)^{-1} \mathbf{H} \\
&= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} \frac{1}{T} \mathbf{H}^{T}\left(\frac{\mathbf{H D}_{0} \mathbf{H}^{T}}{T}\right)^{n} \mathbf{H} \\
&= \mathbf{D}_{0}^{-1 / 2}\left[\tilde{\mathbf{M}}(z \mathbf{1}-\tilde{\mathbf{M}})^{-1}\right] \mathbf{D}_{0}^{-1 / 2} \quad \text { with } \quad \tilde{\mathbf{M}}:=q \mathbf{D}_{0}^{1 / 2} \mathbf{H} \mathbf{H}^{T} \mathbf{D}_{0}^{1 / 2} / N . \\
& \mathbb{E}[\mathbf{F}(z)]=\mathbf{D}_{0}^{-1 / 2}\left[q \mathbf{D}_{0}\left(\frac{z}{1+\tilde{q} \mathfrak{t}_{\tilde{\mathbf{M}}}(z)} \mathbf{1}-q \mathbf{D}_{0}\right)^{-1}\right] \mathbf{D}_{0}^{-1 / 2} . \\
& \quad \text { Note that } \tilde{q} \mathfrak{t}_{\tilde{\mathbf{M}}}(z)=\mathfrak{t}_{\mathbf{M}}(z)
\end{aligned}
$$

$$
\begin{equation*}
h(z)=c_{1}+\frac{1}{T} \operatorname{Tr}\left(\mathbf{D}\left(Z(z) \mathbf{1}-q \mathbf{D}_{0}\right)^{-1}\right) \tag{31}
\end{equation*}
$$

$$
\begin{gathered}
h(z)=\left\langle\frac{a^{2} f(y)}{Z(z)-f\left(a^{2}\right)}\right\rangle \\
Z(z)=\frac{z}{q+q \mathfrak{t}_{\mathbf{M}}(z)}
\end{gathered}
$$

$$
\begin{align*}
q \mathfrak{t}_{\mathbf{M}}(z) & =\mathfrak{t}_{\mathbf{D}_{0}}(Z(z)) \tag{34}\\
& =\left\langle\frac{f(y)}{Z(z)-f\left(a^{2}\right)}\right\rangle
\end{align*}
$$

Parametric solution

$$
\begin{equation*}
\varrho=\frac{1}{1-h^{\prime}\left(\lambda_{1}\right)} \quad \text { with } \quad \lambda_{1}=h\left(\lambda_{1}\right) \tag{36}
\end{equation*}
$$

3 equations for 3 unknowns (λ_{1}, h and Z). Eliminate λ_{1}, work with $Z\left(\lambda_{1}\right) \equiv Z$

$$
\begin{equation*}
\lambda_{1}=h\left(\lambda_{1}\right)=Z\left(\lambda_{1}\right)\left(q+q \mathbf{t}_{\mathbf{M}}(z)\right) \equiv \psi_{q}(Z) \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
h(Z)=\left\langle\frac{a^{2} f(y)}{Z-f\left(a^{2}\right)}\right\rangle \quad, \quad \psi_{q}(Z)=q+\left\langle\frac{f(y)}{Z-f\left(a^{2}\right)}\right\rangle \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\varrho=\frac{\psi_{q}^{\prime}(Z)}{\psi_{q}^{\prime}(Z)-h^{\prime}(Z)} \quad \text { with } \quad \psi_{q}(Z)=h(Z) \tag{39}
\end{equation*}
$$

Explicit Results in the noiseless case $\left(y=a^{2}\right)$

$$
\begin{gather*}
\text { For } f(y)=\Theta(y-1): \\
\varrho=1-\frac{m_{1} q}{\left(c_{2}-m_{1}\right)^{2}+\left(c_{2}-m_{1}\right) q} \quad q<q^{*}, \tag{40}
\end{gather*}
$$

Luo, Alghamdi and Lu have shown that $f(y)=1-1 / y$ is optimal for all q. In this case

$$
\begin{equation*}
q(Z)=\sqrt{\frac{\pi}{2}} Z^{2} \frac{\left.\mathrm{e}^{\frac{1}{2(Z-1)}} \operatorname{erfc}(1 / \sqrt{2(Z-1)})\right)}{(Z-1)^{5 / 2}}-\frac{Z}{(Z-1)^{2}} \quad, \quad \varrho(Z)=\frac{Z-1}{Z} . \quad \text { for } Z>1 \tag{41}
\end{equation*}
$$

