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pierre.degond@math.univ-toulouse.fr

http://sites.google.com/site/degond/

– p. 1/26



↑ ↓Pierre Degond - Swarming bodies: geometry and topology - IRS 23/01/2024

2Collaborators

Antoine Diez1, Amic Frouvelle2,

Sara Merino-Aceituno3, Mingye Na4, Ariane Trescases5

1: Kyoto U. (Japan) 2: Dauphine & U. Poitiers (France)

3: U. Vienna (Austria) 4: SUSTech Shenzhen (China) 5: CNRS Toulouse (France)

Antoine Amic Sara Mingye Ariane

[PD, Frouvelle, Merino-Aceituno, M3AS 27 (2017)]

[PD, Frouvelle, Merino-Aceituno, Trescases, MMS 16 (2018)]

[PD, Diez, Na, SIADS 21 (2022)]

[PD, Diez, Frouvelle, arXiv. 2111.05614]

[PD, Frouvelle, EJAM (to appear)]

– p. 2/26



↑ ↓Pierre Degond - Swarming bodies: geometry and topology - IRS 23/01/2024

3Summary

1. Introduction

2. Particle dynamics and mean-field approximation

3. Hydrodynamic model

4. Topological solutions

5. Conclusion

– p. 3/26



↑ ↓Pierre Degond - Swarming bodies: geometry and topology - IRS 23/01/2024

4

1. Introduction
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5Collective dynamics

?

Individual agents
obey simple rules

no leader

Emergence of large−scale
coherent structures

in agent’s behavior

Micro−scale Macro scale

Not directly encoded

Questions:
Link between micro-scale geometry

and large-scale structures

Topology of collective structures

Object of study: body orientation dynamics

Methodology: dual use of microscopic models

and their macroscopic counterparts
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6Velocity vs body-attitude alignment

Velocity direction alignment: Vicsek model (Phys. Rev. Lett. 95):

Self-propelled agents are polar rods which align single axis

Body-attitude alignment: self-propelled agents

are solid bodies which align their n principle axes (in dim = n)

Vicsek model Body attitude alignment

Numerical simulations: A. Frouvelle / A. Diez (using GPU)
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7Why body-attitude alignment ?

In 3D: - Bird or fish dynamics [Hemelrijk et al, 2010-2012]

- Volume exclusion interaction of complex shape objects

example: spermatozoa

From Wikipedia [David et al, Animal Reprod. Sci., 2015]

In any D: - Flow of data structured as n-dimensional rotations

- Gives structural information useful for 3D
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2. Particle dynamics and mean-field
approximation
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9Particle dynamics

Xk(t): position of Particle “k” (k = 1, . . . , N)

Ak(t): body frame of “k” ≡ rotation Ak(t)

ωk
1
(t) = Ak(t)e1: self-propulsion direction

Vicsek-like: self-propelled particles (speed 1)

align their body attitude + noise

dXk(t) = Ak(t)e1 dt

dAk(t) = PTAk(t)
◦
[

κP(Jk(t))dt+
√
2dBk

t

]

Jk(t) =
∑

j s.t. |Xj(t)−Xk(t)|≤R

Aj(t)

P(J) = (JJT )−1/2J = projects on rotations

κ = alignment rate

P(Jk)

R

Aj

Xk
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10Mean-field model (large N)

f(x,A, t) = distribution function: at position x, rotation A, time t

= number of particles in small volume around (x,A) at t

∂tf + (Ae1) · ∇xf =
1

ε
∇A ·

[

− κPTA

(

P(Jf )
)

f +∇Af
]

Jf (x, t) =

∫

f(x,A, t)AdA

ε≪ 1: alignment & noise happen fast, with rate 1

ε

R = O(ε) so interactions become local

Hydrodynamic model obtained in the limit ε→ 0
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11Collision operator (Fokker-Planck)

∂tf + (Ae1) · ∇xf =
1

ε
Q(f)

Q(f) = ∇A ·
[

− κPTA

(

P(Jf )
)

f +∇Af
]

, Jf =

∫

f AdA

Q(f) = 0 ⇐⇒ f(A) = ρMΓ(A)

MΓ(A) ∼ exp
(

κΓ ·A
)

where Γ can be any rotation and ρ any positive number

Γ
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12Alternate collision operator (BGK)

Q(f) = ρfMΓf
− f

with ρf =

∫

f dA, Γf = P(Jf )

Corresponds to jump process:
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3. Hydrodynamic model
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14Self-Organized Hydrodynamics

f(x,A, t) −→
ε→0

ρ(x, t)MΓ(x,t)(A) where (ρ,Γ) satisfy

∂tρ+∇x · (c1ρΩ1) = 0

ρ (∂t + c2Ω1 · ∇x)Γ = WΓ

with

Ωj := Γej

W = −c3∇xρ ∧ Ω1 − c4ρ
[

(Γ(∇x · Γ)) ∧ Ω1 +∇x ∧ Ω1

]

and

(F ∧G)ij = FiGj − FjGi

(∇x ∧ F )ij = ∂xi
Fj − ∂xj

Fi
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15Derivation from kinetic model: ε → 0

Write: T f =
1

ε
Q(f), T = ∂t + (Ae1) · ∇x

Q(f) = εT f−→
ε→0

0

hence
f −→

ε→0
ρMΓ

for ρ(x, t), Γ(x, t) to be determined

ρ-equation (continuity eq.):

∫

T f dA =
1

ε

∫

Q(f) dA ≡ 0

=⇒
ε→0

∫

T (ρMΘ) dA = 0
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16Derivation: Eq. for Γ

There exists µ(A) antisymmetric matrix s.t.

∫

Q(f)µ(ΓT
f A) dA = 0

Implies:
ε→0

∫

T (ρMΘ)µ(Γ
TA) dA = 0

BGK case, any dimension: µ(A) = A−AT

– p. 16/26



↑ ↓Pierre Degond - Swarming bodies: geometry and topology - IRS 23/01/2024

17Eq. for Γ, Fokker-Planck case

Fokker-Planck case, n = 3:

µ(A) = (A−AT )ψ
(

Tr(A)/2
)

where ψ is such that

α(θ) = sin θ ψ(cos θ + 1/2)

solves:

− 1

m

∂

∂θ

(

m
∂α

∂θ

)

+
α

1− cos θ
= sin θ

with

m(θ) = sin2(θ/2) exp
(

κ(cos θ + 1/2)
)

Fokker-Planck case, n ≥ 4: much more complicated

Requires advanced knowledge of rotation group

Maximal torus, Cartan subalgebra, Weyl group
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18Eq. for Γ: final steps

Simplification of

∫

T (ρMΘ)µ(Γ
TA) dA = 0

requires Lie-groups representation theory

Explicit formulas for coefficients ci:

Fokker-Planck case (n = 3):

c1 =
2
3

〈

1
2 + cos θ

〉

m
c2 =

1
5 〈3− 2 cos θ〉mα sin θ

c3 =
1
κ

c4 =
1
5 〈1− cos θ〉mα sin θ

where 〈f〉g =
(

∫ π

0
f(θ) g(θ) dθ

)/(

∫ π

0
g(θ) dθ

)

BGK case (n = 3): make α = sin θ
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4. Topological solutions
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20Topological states in collective dynamics

Chiral edge states for Toner & Tu model [Bartolo et al 2017]

Our goal: explore properties of topological states

in the body orientation model

in the bulk (not edge states)

on both the macro and micro levels

Motivation: explore if topological protection could explain

living systems robustness in spite of stochasticity
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21Milling solution

Exact solution of body orientation Hydrodynamic model

Has ρ = ρ0 = Constant and Γ given by:

– p. 21/26



↑ ↓Pierre Degond - Swarming bodies: geometry and topology - IRS 23/01/2024

22Topological phase transition ?

double mill opposite mills

Mill goes to flocking state: topological phase transition ?
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23Polarization curve

of the slice
Polarization vector

Within a given slice

Average2

1
2 3

4 5
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3

1

4
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24Topological phase transitions

double mill Opposite mills

Topological phase transition =⇒
passage through disordered state
where winding number is not defined
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5. Conclusion
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26Summary & Perspectives

Summary

New collective dynamics model relying on full body-alignment

Derivation of macro model via Lie group theory

Possesses solutions with non-trivial topology

Microscopic model exhibits topological phase transitions

Perspectives

Existence and uniqueness for the hydrodynamic model

Rigorous proof of convergence from micro to macro

Numerical simulations of macroscopic model

Stability of topological solutions

Further directions

Models involving other complex geometric structures

or other classes of topological states
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