Swarming rigid bodies: geometry and topology

Pierre Degond

CNRS & Institut de Mathématiques de Toulouse pierre.degond@math.univ-toulouse.fr http://sites.google.com/site/degond/

Collaborators

Antoine Diez¹, Amic Frouvelle², Sara Merino-Aceituno³, Mingye Na⁴, Ariane Trescases⁵

1: Kyoto U. (Japan) 2: Dauphine & U. Poitiers (France) 3: U. Vienna (Austria) 4: SUSTech Shenzhen (China) 5: CNRS Toulouse (France)

Antoine

Amic

Sara

Mingye

Ariane

[PD, Frouvelle, Merino-Aceituno, M3AS 27 (2017)] [PD, Frouvelle, Merino-Aceituno, Trescases, MMS 16 (2018)] [PD, Diez, Na, SIADS 21 (2022)] [PD, Diez, Frouvelle, arXiv. 2111.05614] [PD, Frouvelle, EJAM (to appear)]

1. Introduction

- 2. Particle dynamics and mean-field approximation
- 3. Hydrodynamic model
- 4. Topological solutions
- 5. Conclusion

1. Introduction

Collective dynamics

Questions:

Link between micro-scale geometry and large-scale structures Topology of collective structures

Object of study: body orientation dynamics

Methodology: dual use of microscopic models and their macroscopic counterparts

Velocity vs body-attitude alignment

Velocity direction alignment: Vicsek model (Phys. Rev. Lett. 95): Self-propelled agents are polar rods which align single axis

Body-attitude alignment: self-propelled agents are solid bodies which align their n principle axes (in dim = n)

Vicsek model

Body attitude alignment

Numerical simulations: A. Frouvelle / A. Diez (using GPU)

Why body-attitude alignment ?

In 3D: - Bird or fish dynamics [Hemelrijk et al, 2010-2012]

- Volume exclusion interaction of complex shape objects example: spermatozoa

In any D: - Flow of data structured as *n*-dimensional rotations - Gives structural information useful for 3D

2. Particle dynamics and mean-field approximation

Particle dynamics

 $X_k(t)$: position of Particle "k" (k = 1, ..., N) $A_k(t)$: body frame of "k" \equiv rotation $A_k(t)$ $\omega_1^k(t) = A_k(t)e_1$: self-propulsion direction

Vicsek-like: self-propelled particles (speed 1) align their body attitude + noise

$$\begin{split} dX_k(t) &= A_k(t)e_1 \, dt \\ dA_k(t) &= P_{T_{A_k(t)}} \circ \left[\kappa \mathcal{P}(J_k(t)) dt + \sqrt{2} dB_t^k \right] \\ J_k(t) &= \sum_{j \text{ s.t. } |X_j(t) - X_k(t)| \le R} A_j(t) \end{split}$$

$$\mathcal{P}(J) = (JJ^T)^{-1/2}J = \text{projects on rotations}$$

 $\kappa = \text{alignment rate}$

Mean-field model (large N)

f(x, A, t) = distribution function: at position x, rotation A, time t= number of particles in small volume around (x, A) at t

$$\partial_t f + (Ae_1) \cdot \nabla_x f = \frac{1}{\varepsilon} \nabla_A \cdot \left[-\kappa P_{T_A} \left(\mathcal{P}(J_f) \right) f + \nabla_A f \right]$$
$$J_f(x,t) = \int f(x,A,t) A \, dA$$

 $\varepsilon \ll 1$: alignment & noise happen fast, with rate $\frac{1}{\varepsilon}$ $R = \mathcal{O}(\varepsilon)$ so interactions become local

Hydrodynamic model obtained in the limit $\varepsilon \to 0$

Collision operator (Fokker-Planck)

$$\partial_t f + (Ae_1) \cdot \nabla_x f = \frac{1}{\varepsilon} Q(f)$$
$$Q(f) = \nabla_A \cdot \left[-\kappa P_{T_A} (\mathcal{P}(J_f)) f + \nabla_A f \right], \quad J_f = \int f A \, dA$$

11

$$Q(f) = 0 \iff f(A) = \rho M_{\Gamma}(A)$$

 $M_{\Gamma}(A) \sim \exp(\kappa \Gamma \cdot A)$

where Γ can be any rotation and ρ any positive number

 \uparrow Pierre Degond - Swarming bodies: geometry and topology - IRS 23/01/2024 \downarrow

Alternate collision operator (BGK)

$$Q(f)=
ho_f M_{\Gamma_f}-f$$
 with $ho_f=\int f\,dA, \quad \Gamma_f=\mathcal{P}(J_f)$

12

Corresponds to jump process:

3. Hydrodynamic model

Self-Organized Hydrodynamics

$$f(x, A, t) \xrightarrow[\varepsilon \to 0]{} \rho(x, t) \mathcal{M}_{\Gamma(x, t)}(A)$$
 where (ρ, Γ) satisfy
 $\partial_t \rho + \nabla_x \cdot (c_1 \rho \Omega_1) = 0$

$$\rho \left(\partial_t + c_2 \Omega_1 \cdot \nabla_x\right) \Gamma = \mathbb{W} \Gamma$$

with

$$\Omega_j := \Gamma e_j$$
$$\mathbb{W} = -c_3 \nabla_x \rho \wedge \Omega_1 - c_4 \rho \big[(\Gamma(\nabla_x \cdot \Gamma)) \wedge \Omega_1 + \nabla_x \wedge \Omega_1 \big]$$

and

$$(F \wedge G)_{ij} = F_i G_j - F_j G_i$$

 $(\nabla_x \wedge F)_{ij} = \partial_{x_i} F_j - \partial_{x_j} F_i$

Derivation from kinetic model: $\varepsilon \to 0$ 15

Write:
$$\mathcal{T}f = \frac{1}{\varepsilon}Q(f)$$
, $\mathcal{T} = \partial_t + (Ae_1) \cdot \nabla_x$

$$Q(f) = \varepsilon \mathcal{T} f \underset{\varepsilon \to 0}{\longrightarrow} 0$$

hence

 $f \xrightarrow[\varepsilon \to 0]{} \rho \mathcal{M}_{\Gamma}$

for $\rho(x,t)$, $\Gamma(x,t)$ to be determined

 ρ -equation (continuity eq.):

$$\int \mathcal{T}f \, dA = \frac{1}{\varepsilon} \int Q(f) \, dA \equiv 0$$
$$\implies_{\varepsilon \to 0} \int \mathcal{T}(\rho \mathcal{M}_{\Theta}) \, dA = 0$$

There exists $\mu(A)$ antisymmetric matrix s.t.

$$\int Q(f) \,\mu(\Gamma_f^T A) \, dA = 0$$

Implies:
$$\int \mathcal{T}(\rho \mathcal{M}_{\Theta}) \mu(\Gamma^T A) \, dA = 0$$
$$\varepsilon \to 0$$

BGK case, any dimension: $\mu(A) = A - A^T$

Eq. for Γ , Fokker-Planck case

Fokker-Planck case, n = 3:

$$\mu(A) = (A - A^T)\psi\bigl(\mathrm{Tr}(A)/2\bigr)$$

where ψ is such that

$$\alpha(\theta) = \sin \theta \, \psi(\cos \theta + 1/2)$$

solves:

$$-\frac{1}{m}\frac{\partial}{\partial\theta}\left(m\frac{\partial\alpha}{\partial\theta}\right) + \frac{\alpha}{1-\cos\theta} = \sin\theta$$

with

$$m(\theta) = \sin^2(\theta/2) \exp\left(\kappa(\cos\theta + 1/2)\right)$$

Fokker-Planck case, $n \ge 4$: much more complicated Requires advanced knowledge of rotation group Maximal torus, Cartan subalgebra, Weyl group

Eq. for Γ : final steps

Simplification of $\int \mathcal{T}(\rho \mathcal{M}_{\Theta}) \mu(\Gamma^T A) dA = 0$

requires Lie-groups representation theory

Explicit formulas for coefficients c_i :

Fokker-Planck case (n = 3):

$$c_{1} = \frac{2}{3} \left\langle \frac{1}{2} + \cos \theta \right\rangle_{m} \quad c_{2} = \frac{1}{5} \left\langle 3 - 2\cos \theta \right\rangle_{m \alpha \sin \theta}$$

$$c_{3} = \frac{1}{\kappa} \qquad c_{4} = \frac{1}{5} \left\langle 1 - \cos \theta \right\rangle_{m \alpha \sin \theta}$$
where $\langle f \rangle_{g} = \left(\int_{0}^{\pi} f(\theta) g(\theta) d\theta \right) / \left(\int_{0}^{\pi} g(\theta) d\theta \right)$

$$0.55 \qquad 0.55 \qquad 0.55$$

4. Topological solutions

Topological states in collective dynamics 20

Chiral edge states for Toner & Tu model [Bartolo et al 2017]

Our goal: explore properties of topological states in the body orientation model in the bulk (not edge states) on both the macro and micro levels

Motivation: explore if topological protection could explain living systems robustness in spite of stochasticity

Milling solution

Exact solution of body orientation Hydrodynamic model Has $\rho = \rho_0 = \text{Constant}$ and Γ given by:

 \uparrow Pierre Degond - Swarming bodies: geometry and topology - IRS 23/01/2024 \downarrow

Topological phase transition ?

22

Mill goes to flocking state: topological phase transition ?

Polarization curve

Topological phase transitions

double mill

Topological phase transition \implies

passage through disordered state where winding number is not defined

5. Conclusion

Summary

New collective dynamics model relying on full body-alignment Derivation of macro model via Lie group theory Possesses solutions with non-trivial topology Microscopic model exhibits topological phase transitions

Perspectives

Existence and uniqueness for the hydrodynamic model Rigorous proof of convergence from micro to macro Numerical simulations of macroscopic model Stability of topological solutions

Further directions

Models involving other complex geometric structures or other classes of topological states