
On the non-equilibrium fluctuations of
partial exclusion with open boundary

Patricia Gonçalves
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The plan for today′s lecture:
1 Exclusion (ONE particle per site): hydrodynamics and

fluctuations
2 Partial exclusion (α particles per site)
3 Correlation estimates

Joint with

Chiara Franceschini, Milton Jara, Beatriz Salvador



The dynamics:

• For N ≥ 1 let ΛN = {1, . . . , N − 1}.
• We denote the process by {ηt : t ≥ 0} which has state space

ΩN := {0, 1}ΛN .
• The infinitesimal generator LN = LN,0 + LN,b is given on

f : ΩN → R, by

(LN,0f)(η) =
N−2∑
x=1

cx,x+1(η)
(
f(ηx,x+1) − f(η)

)
,

(LN,bf)(η) = κ

N θ

∑
x∈{1,N−1}

crx(η(x))
(
f(ηx) − f(η)

)
,

where cx,x+1(η) := η(x)(1 − η(x + 1)) + η(x + 1)(1 − η(x)),
for x = 1 and x = N − 1,
crx(η(x)) = rx(1 − η(x)) + (1 − rx)η(x),
r1 = α and rN−1 = β.



Invariant measures:

♣ If α = β = ρ the Bernoulli product measures are invariant
(equilibrium measures): νρ(η : η(x) = 1) = ρ.

♣ If α ̸= β the Bernoulli product measure is no longer invariant,
but since we have a finite state irreducible Markov process
there exists a UNIQUE invariant measure: the stationary
measure (non-equilibrium) denoted by µss.

♣ By the matrix ansatz method one can get information about
this measure. (Not for the partial exclusion!)



Hydrodynamics



Hydrodynamic Limit:

♣ For η ∈ ΩN , let πN
t (η, dq) = 1

N

∑N−1
x=1 ηtN2(x)δx/N (dq), be the

empirical measure. (Diffusive time scaling!)
♣ Assumption: fix g : [0, 1] → [0, 1] measurable and probability measures
{µN }N≥1 such that for every H ∈ C([0, 1]),

1
N

N−1∑
x=1

H( x
N ) η(x) →N→+∞

∫ 1

0
H(q) g(q)dq,

wrt µN . (µN is associated to g(·))
♣ Then: for any t > 0,

πN
t (η, dq) →N→+∞ ρ(t, q)dq,

wrt µN (t), where ρ(t, q) evolves according to a PDE, the hydrodynamic
equation.



Hydrodynamic Limit:

Let g : [0, 1] → [0, 1] be a measurable function and let
{µN }N≥1 be a sequence of probability measures in ΩN as-
sociated to g(·). Then, for any 0 ≤ t ≤ T ,

lim
N→∞

PµN

(∣∣∣ 1
N

∑
x∈ΛN

H( x
N )ηtN2(x)−

∫ 1

0
H(q)ρ(t, q)dq

∣∣∣ > δ
)

= 0

and ρt(·) is the UNIQUE weak solution of the heat equation
∂tρt(q) = ∂2

q ρt(q) with
♣ θ > 1 Neumann b.c.: ∂qρt(0) = ∂qρt(1) = 0.
♣ θ = 1 Robin b.c.:

∂qρt(0) = κ(ρt(0) − α), ∂qρt(1) = κ(β − ρt(1)).
♣ θ < 1 Dirichlet b.c.: ρt(0) = α, ρt(1) = β.

Theorem [Baldasso et al]:



Fluctuations



Non-equilibrium fluctuations (θ ≥ 0):

Definition (Density fluctuation field)
The density fluctuation field YN

· is the time-trajectory of linear
functionals acting on functions H ∈ Sθ as

YN
t (H) = 1√

N

N−1∑
x=1

H( x
N )

(
ηtN2(x) − EµN [ηtN2(x)]

)
.

Definition (The space of test functions)
Let Sθ denote the set of functions H ∈ C∞([0, 1]) such that for
any k ∈ N ∪ {0} it holds that

(1) for θ < 1: ∂2k
u H(0) = ∂2k

u H(1) = 0;
(2) for θ = 1:

∂2k+1
u H(0) = ∂2k

u H(0), ∂2k+1
u H(1) = −∂2k

u H(1);
(3) for θ > 1: ∂2k+1

u H(0) = ∂2k+1
u H(1) = 0.



Fluctuations: θ = 1



What are the conditions on the initial state µN?:

• For each N ∈ N, the measure µN is associated to a
measurable profile ρ0 : [0, 1] → [0, 1]
(This is the same condition for hydrodynamics!).

• For ρN
0 (x) = EµN [η0(x)]

max
x∈ΛN

∣∣ ρN
0 (x) − ρ0( x

N )
∣∣ ≲

1
N

.

• For
φN

0 (x, y) = EµN [η(x)η(y)] − ρN
0 (x)ρN

0 (y)

it holds that

max
1≤x<y≤N−1

∣∣φN
0 (x, y)

∣∣ ≲
1
N

.



Examples of initial measures µN :

• If for a given measurable profile ρ0 : [0, 1] → [0, 1], we take
µN as the Bernoulli product measure with marginal given
by

µN {η : η(x) = 1} = ρ0( x
N )

then all the conditions above are true.

• If µss is the stationary measure, then all the conditions
above are true, by choosing the profile ρ0 as the stationary
profile ρ̄ given by

ρ̄(q) =


(β − α)q + α ; θ < 1,
κ(β−α)

2+κ q + α + β−α
2+κ ; θ = 1,

β+α
2 ; θ > 1.



If {YN
0 }N∈N converges, as N → ∞, to a mean-zero Gaussian

field with covariance E
[
Y0(H)Y0(G)

]
:= σ(H, G), then,

the sequence {QN }N∈N converges, as N → ∞, to a gener-
alized Ornstein-Uhlenbeck process:

∂tYt = ∆1Ytdt +
√

2χ(ρt)∇1 Wt,

where Wt is a space-time white noise of unit variance. As a
consequence, for H, G ∈ Sθ it holds

E [Yt(H)Ys(G)] = σ(T 1
t H, T 1

s G)

+
∫ s

0
⟨∇1T 1

t−rH, ∇1T 1
s−rG⟩L2,1(ρr)dr.

Above T θ
t : Sθ → Sθ is the semigroup associated to the PDE with the corresponding boundary

conditions with α = β = 0.

Theorem [Ornstein-Uhlenbeck limit]:



Associated martingales:
Let H : [0, 1] → R be a test function and note that

MN
t (H) := YN

t (H) − YN
0 (H) −

∫ t

0
N2LN YN

s (H) ds

is a martingale where

N2LN Yn
s (H) = 1√

N

N−1∑
x=1

∆N H( x
N )

(
ηsN2(x) − ρN

s (x)
)

+
√

N
[
∇+

N H(0) − H
( 1

N

)]
η̄sN2(1)

+
√

N
[
H(N−1

N ) + ∇−
N H(1)

]
η̄sN2(N − 1).

Recall that for θ = 1: H ′(0) = H(0) and H ′(1) = −H(1). Note
that the first term at the right-hand side of the previous
expression is YN

s (∆N H). Above,

∇+
N H(x) = N

[
H(x+1

N )−H( x
N )

]
, ∇−

N H(x) = N
[
H( x

N )−H(x−1
N )

]
.



The correlation estimate:

Definition (Two-point correlation function)
For x, y ∈ VN = {(x, y) ; x, y ∈ N, 0 < x < y < N}, t ∈ [0, T ],

φN
t (x, y) = EµN [ηtN2(x)ηtN2(y)] − ρN

t (x)ρN
t (y) ,

and set φN
t (x, y) = 0, for x = 0 or y = N .

If maxx,y∈VN

∣∣φN
0 (x, y)

∣∣ ≲ 1
N , then

supt≥0 max(x,y)∈VN
|φN

t (x, y)| ≲ 1
N .

Proposition:

x

y

0 1 2 N − 1

1
2

N − 1
N



Fluctuations : θ ̸= 1



Non-equilibrium fluctuations (θ ̸= 1):

N2LN YN
s (H) = 1√

N

N−1∑
x=1

∆N H
(

x
N

)(
ηsN2(x) − ρN

s (x)
)

+
√

N∇+
N H(0)η̄sN2(1) −

√
N∇−

N H(1)η̄sN2(N − 1)

−N3/2

N θ
H

(
1
N

)
η̄sN2(1) − N3/2

N θ
H

(
N−1

N

)
η̄sN2(N − 1).

For x ∈ {1, N − 1} and t ∈ [0, T ] it holds that

EµN

[( ∫ t

0
Cθ

N (ηsN2(x) − ρN
s (x)) ds

)2]
≲ (Cθ

N )2 Nθ

N2 .

Lemma:

We apply last result with Cθ
N =

√
N1{θ<1} + N3/2−θ1{θ>1}.



The initial measures:
Fix ρ0 : [0, 1] → [0, 1] measurable and of class C6, and assume

max
x∈ΛN

|ρN
0 (x) − ρ0( x

N )| ≲ 1
N , max

(x,y)∈VN

|φN
0 (x, y)| ≲ 1

N , (1)

max
y∈ΛN

|φN
0 (x, y)| ≲

{
Nθ

N2 , θ ≤ 1,
1
N , θ ≥ 1,

for x = 1, N − 1. (2)

If (1) and (2) hold, then

sup
t≥0

max
(x,y)∈VN

|φN
t (x, y)| ≲ 1

N ,

sup
t≥0

max
y∈ΛN

|φN
t (x, y)| ≲

{
Nθ

N2 , θ ≤ 1,
1
N , θ ≥ 1,

for x = 1, N − 1.

Proposition:



Ingredients for the correlation estimate:
Show that ρN

t (·) is a solution of{
∂tρ

N
t (x) =

(
N2Bθ

N ρN
t

)
(x) , x ∈ ΛN , t ≥ 0 ,

ρN
t (0) = α , ρN

t (N) = β , t ≥ 0 ,

where Bθ
N acts on f : ΛN ∪ {0, N} → R as

(Bθ
N f)(x) =

N∑
y=0

ξN,θ
x,y

(
f(y) − f(x)

)
, for x ∈ ΛN

and it is the infinitesimal generator of the RW in ΛN which is
absorbed at the points {0, N}. Above

ξN,θ
x,y =


1 , if |y − x| = 1 and x, y ∈ ΛN ,

N−θ , if x = 1, y = 0 and x = N − 1 , y = N,

0 , otherwise.



Ingredients for the correlation estimate:
Then φN

t (x, y) is solution of{
∂tφ

N
t (x, y) = N2Aθ

N φN
t (x, y) − (∇+

N ρN
t (x))2δy=x+1, (x, y) ∈ VN ,

φN
t (x, y) = 0, (x, y) ∈ ∂VN .

Above Aθ
N is the

infinitesimal generator of a
random walk XtN2 in
VN ∪ ∂VN which is
absorbed at ∂VN with rate
N−θ.

x

y

0 1 2 N − 1N

1
2

N − 1
N

1

1

1

1

1
Nθ 1 1

Nθ

1

1



How to get bounds?
By Duhamel’s formula

φN
t (x, y) = E(x,y)

[
φN

0 (XtN2) +
∫ t

0
gN

t−s(XsN2)1(XsN2 ∈ D+
N ) ds

]
,

where E(x,y) denotes the expectation of the law of the walk
{XtN2 ; t ≥ 0} starting from (x, y),
gN

t (x, x + 1) = −
(
∇+

N ρN
t (x)

)2
, and

D+
N := {(x, y) ∈ VN : y = x + 1}. Therefore, it is enough to

estimate

max
(z,w)∈VN

z ̸=w

|φN
0 (z, w)| + sup

t≥0
max

z∈ΛN−1
|gN

t (z, z + 1)| max
(x,y)∈VN

x ̸=y

TN (x, y),

where
TN (x, y) := E(x,y)

[∫ ∞

0
1(XtN2 ∈ D+

N )dt

]
is the time spent by the walk on the diagonal D+

N .



Estimating the correlation function?

For estimating gN
t we need to estimate the time spent by a

1 − d RW at the points x = 1 and x = N − 1 and if it is the
absorbed one, then this is of order O(Nθ

N2 ) (good bound when
θ < 1 but not when θ > 1). When θ > 1 we compare with the
reflected RW and we prove that the time now is of order O( 1

N ).

For estimating φN
t we also need the same type of estimates in

the 2 − d setting for the time spent by the RW on the diagonal
D+

N . For θ < 1 we use the absorbed RW but for θ > 1 we use
the reflected RW.



Partial Exclusion:

α ∈ N, λℓ, λr ∈ (0, 1] and ρℓ, ρr ∈ (0, α), θ ∈ R.



Hydrodynamic Limit:

Let g : [0, 1] → [0, 1] be a measurable function and let
{µN }N≥1 be a sequence of probability measures in ΩN as-
sociated to g(·). Then, for any 0 ≤ t ≤ T ,

lim
N→∞

PµN

(∣∣∣ 1
N

∑
x∈ΛN

H( x
N )ηtN2(x)−

∫ 1

0
H(q)ρ(t, q)dq

∣∣∣ > δ
)

= 0

and ρt(·) is the UNIQUE weak solution of the heat equation
∂tρt(q) = α∂2

q ρt(q) with
♣ θ > 1 Neumann b.c.: ∂qρt(0) = ∂qρt(1) = 0.
♣ θ = 1 Robin b.c.:

∂qρt(0) = λℓ(ρt(0) − ρℓ) ∂qρt(1) = λr(ρr − ρt(1)).
♣ θ < 1 Dirichlet b.c.: ρt(0) = ρℓ, ρt(1) = ρr.

Theorem [Franceschini, G., Salvador]:



Different definition?

It would be natural to extend φN
t to the diagonal by

φN
t (x, x) := EµN [(ηtN2(x) − ρN

t (x))2].

A more convenient definition is to extend it as

φN
t (x, x) := EµN

[ α

α − 1ηtN2(x)(ηtN2(x) − 1) − ρN
t (x)2

]
.

In this case we also have
∂tφ

N
t (x, y) = N2Aθ

N φN
t (x, y) − (∇+

N ρN
t (x))2δy=x+1, (x, y) ∈ VN ,

φN
t (x, y) = 0, (x, y) ∈ ∂VN ,

φN
0 (x, y) = EµN [η0(x)η0(y)] − ρN

0 (x)ρN
0 (y), (x, y) ∈ VN ∪ ∂VN ,

but the operator Aθ
N is different from the one in SEP(1).



Another RW

(I JUMP TO THE BOARD NOW!).



What about θ negative?
We expect the same behavior as θ ∈ [0, 1) - DIRICHLET!
In this case the space of test functions that we take is Sθ

composed of functions H ∈ C∞([0, 1]) such that for any
k ∈ N ∪ {0} it holds ∂k

uH(0) = ∂k
uH(1) = 0.

Now all the derivatives are null at the boundary!!! Our result
says that if θ < 0, the sequence {QN }N∈N converges, as
N → +∞, to the generalized Ornstein-Uhlenbeck process as in
the case θ ∈ [0, 1) since Yt satisfies the conditions:

1 regularity condition: E[(Yt(H))2] ≲ ∥H∥L2 , for any H ∈ Sθ;
2 boundary condition: for any t ∈ [0, T ] and j ∈ {0, 1}, it

holds that

lim
ϵ→0

EµN

[(∫ t

0
Ys(ιj

ϵ)ds

)2]
= 0,

where for u ∈ [0, 1] and: j = 0, ι0
ϵ (u) := ϵ−11(0,ϵ](u) and, for

j = 1, ι1
ϵ (u) := ϵ−11[1−ϵ,1)(u) .



And now?

1 Estimates for k-points correlations?
1 How to define the correlation function?
2 How to control static equations?
3 Is the bound equal to SEP(1)?

2 What about other models with duality?

Th a n k y o u !
M e r c i !
O b r i g a d a!


