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@ Exclusion (ONE particle per site): hydrodynamics and
fluctuations

@ Partial exclusion (« particles per site)

@ Correlation estimates
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® For N>1let Ay ={1,...,N —1}.
® We denote the process by {77t t > 0} which has state space

Qn = {0,1} ~.
¢ The infinitesimal generator £n = Ly + L is given on
f:O9ny = R, by
(Znof)n Z Cza+1(1 ( (™) — f(n)),

Enof)) = w5 > enm@)(F0m) - Fm),

ze{l,N—-1}
where ¢z g41(n) == n(z)(1 —n(z + 1)) + n(z + 1)(1 — n(z)),
forr=1landxz =N —1,

Cr,(N(2)) = r2(1 = n(z)) + (1 = re)n(2),
rir=c«aand ry_1 = 0.



& If a = 8 = p the Bernoulli product measures are invariant
(equilibrium measures): v,(n : n(z) =1) = p.

& If a # B the Bernoulli product measure is no longer invariant,
but since we have a finite state irreducible Markov process
there exists a UNIQUE invariant measure: the stationary
measure (non-equilibrium) denoted by fuss.

& By the matrix ansatz method one can get information about
this measure. (Not for the partial exclusion!)



Hydrodynamics




& Forn e Qu, let 7)¥(n,dq) = % Eivz_ll nenz(2)05 /N (dg), be the
empirical measure. (Diffusive time scaling!)

& Assumption: fix g : [0,1] — [0, 1] measurable and probability measures
{#n}N>1 such that for every H € C([0,1]),

wrt pn. (pn is associated to g(+))
& Then: for any t > 0,

wrt puy (), where p(t, q) evolves according to a PDE, the hydrodynamic
equation.




#H ydrodynamic Limit:

f! Theorem [Baldasso et al]:

Let g : [0,1] — [0,1] be a measurable function and let
{n}N>1 be a sequence of probability measures in Qy as-
sociated to g(-). Then, forany 0 <t < T,

lim P, (‘ ZH N )Mz (@ /H p(t q)dq‘ > 5) =

N—
o TEAN

and p(+) is the UNIQUE weak solution of the heat equation
Aipi(q) = 92 pe(q) with

6 > 1 Neumann b.c.: 9,p:(0) = 9yp¢(1) = 0.

6 =1 Robin b.c.:

9gp1(0) = #(pe(0) =), Bgpe(1) = w(B = Pt( ))-

6 <1 Dirichlet b.c.: p(0) = o, p(1) =




Ftuctualitond




Definition (Density fluctuation field)

The density fluctuation field Y is the time-trajectory of linear
functionals acting on functions H € 8y as

N—
GytN = \/L— E_: % (77tN2 T) — EMN[ntN2($)]>-

Definition (The space of test functions)

Let Sy denote the set of functions H € C*°([0, 1]) such that for
any k € NU {0} it holds that

o for § <1: 92¥H(0) = 02FH (1) = 0;
® for 6 =1:

OFFTLH(0) = 92FH(0),  OFFTTH(1) = —92FH(1);
® for 6 > 1: 921 H(0) = 92+ H(1) = 0.




Fluctuations: 0 =1




¢ For each N € N, the measure uy is associated to a
measurable profile pg : [0,1] — [0, 1]
(This is the same condition for hydrodynamics!).

° For pd(z) = E,y [n0(2)]

2|~

Nix)— po(Z)| <
max | pg' (x) = po(F)] S

* For
00 (7,9) = Euy [n(@)n(y)] — po ()00 (y)

it holds that

1
N <
) ngaéXN_llwo (z,y)| S N



o If for a given measurable profile pg : [0,1] — [0, 1], we take
un as the Bernoulli product measure with marginal given
by

pn{n :n(z) =1} = po(F)

then all the conditions above are true.

o If ugs is the stationary measure, then all the conditions
above are true, by choosing the profile pg as the stationary
profile p given by

(/B_a)q+a70<17

pla) =1 “Tgta+b29=1,

Bta .
520> 1.



g Theorem [Ornstein-Uhlenbeck limit]:
If {Y' } ven converges, as N — 0o, to a mean-zero Gaussian
field with covariance E [%(H)%(G)} = o(H,G), then,

the sequence {Qx} nyen converges, as N — oo, to a gener-
alized Ornstein-Uhlenbeck process:

Yy = M Ydt + 1/ 2x(pt) V1,

where T} is a space-time white noise of unit variance. As a
consequence, for H, G € 8y it holds

E[%(H)Ys(G)] = o(T}H,T!G)
+/ <v1Tt17rH7 vlTsler>L2’1(PT)dr‘
0

Above Tt‘9 : 89 — 8y is the semigroup associated to the PDE with the corresponding boundary

conditions with &« = 8 = 0.




Let H : [0,1] — R be a test function and note that

() = YY) =Y ) — [ Ny s

is a martingale where

N2 Y (H Z ANH (%) (none (@) = oY ()
+VN [V}H(O) — H ()| ien2(1)

+ VN [H(XF) + VL H (D) aye (N = 1).

Recall that for § = 1: H'(0) = H(0) and H'(1) = —H(1). Note
that the first term at the right-hand side of the previous
expression is YN (AxH). Above,

ViH(@) = N [H(%)-H(%)|, VyH(@) = N [H(F)-H(FH)]-



Definition (Two-point correlation function)

For z,y € Vy = {(z,y); 2,y e N, 0<z <y < N}, tel0,T],

or (z,y) = Euynve(@)nvz@)] — of (@)pf ()

and set ¢ (z,y) =0, forz =0 or y = N.

Yy
f!Proposition: N_]\lr : : : : °
If max, yevy |0 (¢,9)| S %, then 0o
20"
SUP;>0 MaX(z,y)eViy |<Piv($,y)| = % 1 .
ot12 ~N-1 %



Fluctuations : 0 # 1




1
+VNVEH ()72 (1) = VNV H(1)in2 (N = 1)

f! Lemma:

For x € {1, N — 1} and ¢ € [0, 7] it holds that

By [( [ Chlnan(@) - ol @) ds) ] 5 (%23,

We apply last result with Cj‘(, = \/N].{9<1} + N3/2_61{9>1}-



Fix po : [0,1] — [0, 1] measurable and of class C%, and assume

1

mex o (@) —po(R) S 3, max led @y Sy ()
N a<1

<YNT T = forx =1, N — 1. 2

;g%xm(acy)|m,{%921 or @

g Proposition:
If (1) and (2) hold, then

sup max T
A g ,y)eva (z,y)] S

0<1,
Sup max 5 < -
SUp max et ()] {le’ 6> 1,

< L
N

forx=1,N —1.




Show that p{'(-) is a solution of

8tp1jfv(m) (NZ%N:Ot )( )7 $€AN, tZOa
P (0) =a,p(N) = 8, =0,

where 8%, acts on f: Ay U{0,N} — R as

me,y — f(z)), forzeAy

and it is the infinitesimal generator of the RW in Ay which is
absorbed at the points {0, N}. Above

1, if [y—z|=1andz,y€ Ay,
fi\{f: N? ifz=1y=0andz=N—-1,y=N,
0, otherwise.



Then ¢ (z,v) is solution of

NQAN% (z,y) —

oo (x,y) =
0, (z,y) € OVn.

o (z,y) =

Above A%, is the
infinitesimal generator of a
random walk X;p2 in

Vn U OV which is
absorbed at OV with rate
N9,

(VN:Ot (z ))25y=x+1> (w,y) € VN,

Yy
N 9xs0 o °1°)1° °
N—-1¢ o 0 o o N
M~
e O o
1{ <1
° o,
2¢ ol
ol 1 2 N—IN <



By Duhamel’s formula

t
o (@) = Eag) [ 0] (Xon2) + /O 9L (Xoy2)1(X,n2 € DY) ds],
where E(, ) denotes the expectation of the law of the walk
{Xin2;t > 0} starting from (z,y),

2

g (@, +1) = = (VipN(2)) ", and
DY, == {(z,y) € VN : y=a+ 1}. Therefore, it is enough to
estimate

max |goév(z,w)|+sup max |giv(z,z+1)| max  Ty(z,y),

(z,w)eVN t>0 2€AN-1 (z,y)eVN
zFwW zAy
where

TN(m’ y) = IE(w,y) [/() 1(‘)(tN2 € IDj—l\—[)dt

is the time spent by the walk on the diagonal DJ"\}.



For estimating g;¥ we need to estimate the time spent by a

1 —d RW at the points x =1 and x = N — 1 and if it is the
absorbed one, then this is of order O(%og) (good bound when

6 < 1 but not when 6 > 1). When 6 > 1 we compare with the
reflected RW and we prove that the time now is of order O(%).

For estimating ¢} we also need the same type of estimates in
the 2 — d setting for the time spent by the RW on the diagonal
’D]J(,. For 6 < 1 we use the absorbed RW but for § > 1 we use
the reflected RW.



n(y)[a—n(y—1)]

n(y)[a—n(y+1)]

n(@)[a—n(z+1)] ==
[ ]
(@) la—n(z—1)] . AT[a
Ao pf : o Aezellp (N —1)
vo 1) na—n@] T n % nN-Dla—n(N-2] N "
— o g () Y
[ I O O
L0 L] L L
1 1 1 1 I .
0 1 2 Xx-1 X X+1 y-1 y y+1 e N2 N4 N
left right
FQSQI'VD reservoir
[ AT pT
255 la—n(D)] s

o (N —=1)]

a €N, A\, A\ € (0,1] and pg, pr € (0,a), 6 € R.



#H ydrodynamic Limit:

f! Theorem [Franceschini, G., Salvador]:

Let g : [0,1] — [0,1] be a measurable function and let
{n}N>1 be a sequence of probability measures in Qy as-
sociated to g(-). Then, forany 0 <t < T,

lim P, (‘ ZH N )Mz (@ /H p(t q)dq‘ > 5) =

N—
o TEAN

and p(+) is the UNIQUE weak solution of the heat equation
Aipi(q) = ad; pi(q) with
6 > 1 Neumann b.c.: 9,p:(0) = 9yp¢(1) = 0.
6 = 1 Robin b.c.:
9qp(0) = X' (pe(0) — p°) 5‘qpt( )=\ (p —pt( ))-
6 < 1 Dirichlet b.c.: p:(0) = p’, pi(1) =




It would be natural to extend <p,fv to the diagonal by

o (2,2) = By [(nne(2) — pr (2))%).

A more convenient definition is to extend it as

o (@, 2) 1= By [y (2) (e (2) — 1) = piY (2)?]

«
a—1
In this case we also have

at@iv(xay) = NQA?thév(x,y) - (v—ij\_/piv(w))Q(sy:w-f-l? (xvy) € VN’
o (z,y) =0, (z,y) € IV,
o (2, y) = By [no(@)no )] — o (2)p (y), (z,y) € Vv UV,

but the operator A% is different from the one in SEP(1).
N



NOXO O O Q O O
N°® 1 7 4
F~ F~ / N?

(I JUMP TO THE BOARD NOW!).



We expect the same behavior as 6 € [0,1) - DIRICHLET!
In this case the space of test functions that we take is Sy
composed of functions H € C*°(]0, 1]) such that for any
k € NU {0} it holds 0¥ H(0) = 0kH(1) = 0.
Now all the derivatives are null at the boundary!!! Our result
says that if 6 < 0, the sequence {Qn}nen converges, as
N — 400, to the generalized Ornstein-Uhlenbeck process as in
the case 6 € [0,1) since Y, satisfies the conditions:
© regularity condition: E[(%(H))?] < ||H|| 12, for any H € Sy;
@ boundary condition: for any ¢ € [0,7] and j € {0, 1}, it

holds that
t ] 2
. j _
ImE, l(/o %(Le)d8> ] =0,

where for u € [0,1] and: j =0, X(u) := € 1y q(u) and, for
Jj=1, Li(u) = 6_11[1—671)(u) .



@ Estimates for k-points correlations?

@ How to define the correlation function?
@ How to control static equations?
@ TIs the bound equal to SEP(1)?

® What about other models with duality?

TJhaeant youl
Mevcil
66+vigadal



