On the non-equilibrium fluctuations of partial exclusion with open boundary

Patricia Gançalves

Inhomogeneous Random Systems
24th January 2024
Paris
(1) Exclusion (ONE particle per site): hydrodynamics and fluctuations
(2) Partial exclusion (α particles per site)
(3) Correlation estimates
goint with

Chiara Franceschini, Milton Jara, Beatriz Salvador

- For $N \geq 1$ let $\Lambda_{N}=\{1, \ldots, N-1\}$.
- We denote the process by $\left\{\eta_{t}: t \geq 0\right\}$ which has state space $\Omega_{N}:=\{0,1\}^{\Lambda_{N}}$.
- The infinitesimal generator $\mathscr{L}_{N}=\mathscr{L}_{N, 0}+\mathscr{L}_{N, b}$ is given on $f: \Omega_{N} \rightarrow \mathbb{R}$, by

$$
\begin{gathered}
\left(\mathscr{L}_{N, 0} f\right)(\eta)=\sum_{x=1}^{N-2} c_{x, x+1}(\eta)\left(f\left(\eta^{x, x+1}\right)-f(\eta)\right), \\
\left(\mathscr{L}_{N, b} f\right)(\eta)=\frac{\kappa}{N^{\theta}} \sum_{x \in\{1, N-1\}} c_{r_{x}}(\eta(x))\left(f\left(\eta^{x}\right)-f(\eta)\right),
\end{gathered}
$$

where $c_{x, x+1}(\eta):=\eta(x)(1-\eta(x+1))+\eta(x+1)(1-\eta(x))$,
for $x=1$ and $x=N-1$,
$c_{r_{x}}(\eta(x))=r_{x}(1-\eta(x))+\left(1-r_{x}\right) \eta(x)$,
$r_{1}=\alpha$ and $r_{N-1}=\beta$.
\% If $\alpha=\beta=\rho$ the Bernoulli product measures are invariant (equilibrium measures): $\nu_{\rho}(\eta: \eta(x)=1)=\rho$.
\& If $\alpha \neq \beta$ the Bernoulli product measure is no longer invariant, but since we have a finite state irreducible Markov process there exists a UNIQUE invariant measure: the stationary measure (non-equilibrium) denoted by $\mu_{s s}$.
8. By the matrix ansatz method one can get information about this measure. (Not for the partial exclusion!)

Hydradynamics
\& For $\eta \in \Omega_{N}$, let $\pi_{t}^{N}(\eta, d q)=\frac{1}{N} \sum_{x=1}^{N-1} \eta_{t N^{2}}(x) \delta_{x / N}(d q)$, be the empirical measure. (Diffusive time scaling!)
\& Assumption: fix $g:[0,1] \rightarrow[0,1]$ measurable and probability measures $\left\{\mu_{N}\right\}_{N \geq 1}$ such that for every $H \in C([0,1])$,

$$
\frac{1}{N} \sum_{x=1}^{N-1} H\left(\frac{x}{N}\right) \eta(x) \rightarrow_{N \rightarrow+\infty} \int_{0}^{1} H(q) g(q) d q
$$

wrt $\mu_{N} \cdot\left(\mu_{N}\right.$ is associated to $\left.g(\cdot)\right)$
\& Then: for any $t>0$,

$$
\pi_{t}^{N}(\eta, d q) \rightarrow_{N \rightarrow+\infty} \rho(t, q) d q
$$

wrt $\mu_{N}(t)$, where $\rho(t, q)$ evolves according to a PDE, the hydrodynamic equation.

Sb Theorem [Baldasso et al]:
Let $g:[0,1] \rightarrow[0,1]$ be a measurable function and let $\left\{\mu_{N}\right\}_{N \geq 1}$ be a sequence of probability measures in Ω_{N} associated to $g(\cdot)$. Then, for any $0 \leq t \leq T$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu_{N}}\left(\left|\frac{1}{N} \sum_{x \in \Lambda_{N}} H\left(\frac{x}{N}\right) \eta_{t N^{2}}(x)-\int_{0}^{1} H(q) \rho(t, q) d q\right|>\delta\right)=0
$$

and $\rho_{t}(\cdot)$ is the UNIQUE weak solution of the heat equation $\partial_{t} \rho_{t}(q)=\partial_{q}^{2} \rho_{t}(q)$ with
\& $\theta>1$ Neumann b.c.: $\partial_{q} \rho_{t}(0)=\partial_{q} \rho_{t}(1)=0$.
\& $\theta=1$ Robin b.c.:

$$
\partial_{q} \rho_{t}(0)=\kappa\left(\rho_{t}(0)-\alpha\right), \quad \partial_{q} \rho_{t}(1)=\kappa\left(\beta-\rho_{t}(1)\right) .
$$

\& $\theta<1$ Dirichlet b.c.: $\rho_{t}(0)=\alpha, \rho_{t}(1)=\beta$.

Feuctuations

Definition (Density fluctuation field)

The density fluctuation field \mathscr{Y}^{N} is the time-trajectory of linear functionals acting on functions $H \in \delta_{\theta}$ as

$$
\mathscr{y}_{t}^{N}(H)=\frac{1}{\sqrt{N}} \sum_{x=1}^{N-1} H\left(\frac{x}{N}\right)\left(\eta_{t N^{2}}(x)-\mathbb{E}_{\mu_{N}}\left[\eta_{t N^{2}}(x)\right]\right) .
$$

Definition (The space of test functions)

Let δ_{θ} denote the set of functions $H \in C^{\infty}([0,1])$ such that for any $k \in \mathbb{N} \cup\{0\}$ it holds that
(1) for $\theta<1$: $\partial_{u}^{2 k} H(0)=\partial_{u}^{2 k} H(1)=0$;
(2) for $\theta=1$:

$$
\partial_{u}^{2 k+1} H(0)=\partial_{u}^{2 k} H(0), \quad \partial_{u}^{2 k+1} H(1)=-\partial_{u}^{2 k} H(1) ;
$$

(3) for $\theta>1: \partial_{u}^{2 k+1} H(0)=\partial_{u}^{2 k+1} H(1)=0$.

Fluctuations: $\theta=1$

- For each $N \in \mathbb{N}$, the measure μ_{N} is associated to a measurable profile $\rho_{0}:[0,1] \rightarrow[0,1]$
(This is the same condition for hydrodynamics!).
- For $\rho_{0}^{N}(x)=\mathbb{E}_{\mu_{N}}\left[\eta_{0}(x)\right]$

$$
\max _{x \in \Lambda_{N}}\left|\rho_{0}^{N}(x)-\rho_{0}\left(\frac{x}{N}\right)\right| \lesssim \frac{1}{N} .
$$

- For

$$
\varphi_{0}^{N}(x, y)=\mathbb{E}_{\mu_{N}}[\eta(x) \eta(y)]-\rho_{0}^{N}(x) \rho_{0}^{N}(y)
$$

it holds that

$$
\max _{1 \leq x<y \leq N-1}\left|\varphi_{0}^{N}(x, y)\right| \lesssim \frac{1}{N}
$$

- If for a given measurable profile $\rho_{0}:[0,1] \rightarrow[0,1]$, we take μ_{N} as the Bernoulli product measure with marginal given by

$$
\mu_{N}\{\eta: \eta(x)=1\}=\rho_{0}\left(\frac{x}{N}\right)
$$

then all the conditions above are true.

- If $\mu_{s s}$ is the stationary measure, then all the conditions above are true, by choosing the profile ρ_{0} as the stationary profile $\bar{\rho}$ given by

$$
\bar{\rho}(q)=\left\{\begin{array}{l}
(\beta-\alpha) q+\alpha ; \theta<1 \\
\frac{\kappa(\beta-\alpha)}{2+\kappa} q+\alpha+\frac{\beta-\alpha}{2+\kappa} ; \theta=1, \\
\frac{\beta+\alpha}{2} ; \theta>1
\end{array}\right.
$$

Theorem [Ornstein-Uhlenbeck limit]:

If $\left\{\mathscr{Y}_{0}^{N}\right\}_{N \in \mathbb{N}}$ converges, as $N \rightarrow \infty$, to a mean-zero Gaussian field with covariance $\mathbb{E}\left[\mathscr{Y}_{0}(H) \mathscr{Y}_{0}(G)\right]:=\sigma(H, G)$, then, the sequence $\left\{Q_{N}\right\}_{N \in \mathbb{N}}$ converges, as $N \rightarrow \infty$, to a generalized Ornstein-Uhlenbeck process:

$$
\partial_{t} \mathscr{Y}_{t}=\Delta_{1} \mathscr{Y}_{t} d t+\sqrt{2 \chi\left(\rho_{t}\right)} \nabla_{1} \mathscr{W _ { V }}
$$

where \mathscr{W}_{t} is a space-time white noise of unit variance. As a consequence, for $H, G \in \delta_{\theta}$ it holds

$$
\begin{aligned}
\mathbb{E}\left[\mathscr{y}_{t}(H) \mathscr{y}_{s}(G)\right] & =\sigma\left(T_{t}^{1} H, T_{s}^{1} G\right) \\
& +\int_{0}^{s}\left\langle\nabla_{1} T_{t-r}^{1} H, \nabla_{1} T_{s-r}^{1} G\right\rangle_{L^{2,1}\left(\rho_{r}\right)} d r .
\end{aligned}
$$

Above $T_{t}^{\theta}: \delta_{\theta} \rightarrow \delta_{\theta}$ is the semigroup associated to the PDE with the corresponding boundary conditions with $\alpha=\beta=0$.

Let $H:[0,1] \rightarrow \mathbb{R}$ be a test function and note that

$$
\mathcal{M}_{t}^{N}(H):=\mathscr{Y}_{t}^{N}(H)-\mathscr{Y}_{0}^{N}(H)-\int_{0}^{t} N^{2} \mathscr{L}_{N} \mathscr{Y}_{s}^{N}(H) d s
$$

is a martingale where

$$
\begin{aligned}
N^{2} \mathscr{L}_{N} \mathscr{Y}_{s}^{n}(H) & =\frac{1}{\sqrt{N}} \sum_{x=1}^{N-1} \Delta_{N} H\left(\frac{x}{N}\right)\left(\eta_{s N^{2}}(x)-\rho_{s}^{N}(x)\right) \\
& +\sqrt{N}\left[\nabla_{N}^{+} H(0)-H\left(\frac{1}{N}\right)\right] \bar{\eta}_{s N^{2}}(1) \\
& +\sqrt{N}\left[H\left(\frac{N-1}{N}\right)+\nabla_{N}^{-} H(1)\right] \bar{\eta}_{s N^{2}}(N-1)
\end{aligned}
$$

Recall that for $\theta=1: H^{\prime}(0)=H(0)$ and $H^{\prime}(1)=-H(1)$. Note that the first term at the right-hand side of the previous expression is $\mathscr{Y}_{s}^{N}\left(\Delta_{N} H\right)$. Above,

$$
\nabla_{N}^{+} H(x)=N\left[H\left(\frac{x+1}{N}\right)-H\left(\frac{x}{N}\right)\right], \quad \nabla_{N}^{-} H(x)=N\left[H\left(\frac{x}{N}\right)-H\left(\frac{x-1}{N}\right)\right]
$$

Definition (Two-point correlation function)

For $x, y \in V_{N}=\{(x, y) ; x, y \in \mathbb{N}, 0<x<y<N\}, t \in[0, T]$,

$$
\varphi_{t}^{N}(x, y)=\mathbb{E}_{\mu_{N}}\left[\eta_{t N^{2}}(x) \eta_{t N^{2}}(y)\right]-\rho_{t}^{N}(x) \rho_{t}^{N}(y),
$$

and set $\varphi_{t}^{N}(x, y)=0$, for $x=0$ or $y=N$.

Proposition:
If $\max _{x, y \in V_{N}}\left|\varphi_{0}^{N}(x, y)\right| \lesssim \frac{1}{N}$, then $\sup _{t \geq 0} \max _{(x, y) \in V_{N}}\left|\varphi_{t}^{N}(x, y)\right| \lesssim \frac{1}{N}$.

Fluctuations : $\theta \neq 1$

$$
\begin{aligned}
N^{2} \mathscr{L}_{N} \mathscr{Y}_{s}^{N}(H) & =\frac{1}{\sqrt{N}} \sum_{x=1}^{N-1} \Delta_{N} H\left(\frac{x}{N}\right)\left(\eta_{s N^{2}}(x)-\rho_{s}^{N}(x)\right) \\
& +\sqrt{N} \nabla_{N}^{+} H(0) \bar{\eta}_{s N^{2}}(1)-\sqrt{N} \nabla_{N}^{-} H(1) \bar{\eta}_{s N^{2}}(N-1) \\
& -\frac{N^{3 / 2}}{N^{\theta}} H\left(\frac{1}{N}\right) \bar{\eta}_{s N^{2}}(1)-\frac{N^{3 / 2}}{N^{\theta}} H\left(\frac{N-1}{N}\right) \bar{\eta}_{s N^{2}}(N-1) .
\end{aligned}
$$

Lemma:

For $x \in\{1, N-1\}$ and $t \in[0, T]$ it holds that

$$
\mathbb{E}_{\mu_{N}}\left[\left(\int_{0}^{t} C_{N}^{\theta}\left(\eta_{s N^{2}}(x)-\rho_{s}^{N}(x)\right) d s\right)^{2}\right] \lesssim\left(C_{N}^{\theta}\right)^{2} \frac{N^{\theta}}{N^{2}}
$$

We apply last result with $C_{N}^{\theta}=\sqrt{N} \mathbf{1}_{\{\theta<1\}}+N^{3 / 2-\theta} \mathbf{1}_{\{\theta>1\}}$.

Fix $\rho_{0}:[0,1] \rightarrow[0,1]$ measurable and of class C^{6}, and assume

$$
\begin{align*}
& \max _{x \in \Lambda_{N}}\left|\rho_{0}^{N}(x)-\rho_{0}\left(\frac{x}{N}\right)\right| \lesssim \frac{1}{N}, \quad \max _{(x, y) \in V_{N}}\left|\varphi_{0}^{N}(x, y)\right| \lesssim \frac{1}{N}, \tag{1}\\
& \max _{y \in \Lambda_{N}}\left|\varphi_{0}^{N}(x, y)\right| \lesssim\left\{\begin{array}{l}
\frac{N^{\theta}}{N^{2}}, \theta \leq 1, \\
\frac{1}{N}, \theta \geq 1,
\end{array} \quad \text { for } x=1, N-1 .\right. \tag{2}
\end{align*}
$$

Proposition:

If (1) and (2) hold, then

$$
\sup _{t \geq 0} \max _{(x, y) \in V_{N}}\left|\varphi_{t}^{N}(x, y)\right| \lesssim \frac{1}{N}
$$

$\sup _{t \geq 0} \max _{y \in \Lambda_{N}}\left|\varphi_{t}^{N}(x, y)\right| \lesssim\left\{\begin{array}{l}\frac{N^{\theta}}{N^{2}}, \theta \leq 1, \\ \frac{1}{N}, \theta \geq 1,\end{array} \quad\right.$ for $x=1, N-1$.

Show that $\rho_{t}^{N}(\cdot)$ is a solution of

$$
\left\{\begin{array}{l}
\partial_{t} \rho_{t}^{N}(x)=\left(N^{2} \mathfrak{B}_{N}^{\theta} \rho_{t}^{N}\right)(x), \quad x \in \Lambda_{N}, \quad t \geq 0 \\
\rho_{t}^{N}(0)=\alpha, \rho_{t}^{N}(N)=\beta, \quad t \geq 0
\end{array}\right.
$$

where $\mathfrak{B}_{N}^{\theta}$ acts on $f: \Lambda_{N} \cup\{0, N\} \rightarrow \mathbb{R}$ as

$$
\left(\mathfrak{B}_{N}^{\theta} f\right)(x)=\sum_{y=0}^{N} \xi_{x, y}^{N, \theta}(f(y)-f(x)), \quad \text { for } x \in \Lambda_{N}
$$

and it is the infinitesimal generator of the RW in $\bar{\Lambda}_{N}$ which is absorbed at the points $\{0, N\}$. Above

$$
\xi_{x, y}^{N, \theta}= \begin{cases}1, & \text { if }|y-x|=1 \text { and } x, y \in \Lambda_{N} \\ N^{-\theta}, & \text { if } x=1, y=0 \text { and } x=N-1, y=N \\ 0, & \text { otherwise }\end{cases}
$$

Then $\varphi_{t}^{N}(x, y)$ is solution of

$$
\left\{\begin{array}{l}
\partial_{t} \varphi_{t}^{N}(x, y)=N^{2} \mathcal{A}_{N}^{\theta} \varphi_{t}^{N}(x, y)-\left(\nabla_{N}^{+} \rho_{t}^{N}(x)\right)^{2} \delta_{y=x+1},(x, y) \in V_{N} \\
\varphi_{t}^{N}(x, y)=0,(x, y) \in \partial V_{N}
\end{array}\right.
$$

Above \mathcal{A}_{N}^{θ} is the infinitesimal generator of a random walk $\mathcal{X}_{t N^{2}}$ in $V_{N} \cup \partial V_{N}$ which is absorbed at ∂V_{N} with rate $N^{-\theta}$.

By Duhamel's formula

$$
\varphi_{t}^{N}(x, y)=\mathbb{E}_{(x, y)}\left[\varphi_{0}^{N}\left(\mathcal{X}_{t N^{2}}\right)+\int_{0}^{t} g_{t-s}^{N}\left(\mathcal{X}_{s N^{2}}\right) \mathbf{1}\left(\mathcal{X}_{s N^{2}} \in \mathcal{D}_{N}^{+}\right) d s\right]
$$

where $\mathbb{E}_{(x, y)}$ denotes the expectation of the law of the walk $\left\{\mathcal{X}_{t N^{2}} ; t \geq 0\right\}$ starting from (x, y),
$g_{t}^{N}(x, x+1)=-\left(\nabla_{N}^{+} \rho_{t}^{N}(x)\right)^{2}$, and
$\mathcal{D}_{N}^{+}:=\left\{(x, y) \in V_{N}: \quad y=x+1\right\}$. Therefore, it is enough to estimate

$$
\max _{\substack{(z, w) \in V_{N} \\ z \neq w}}\left|\varphi_{0}^{N}(z, w)\right|+\sup _{t \geq 0} \max _{z \in \Lambda_{N-1}}\left|g_{t}^{N}(z, z+1)\right| \max _{\substack{(x, y) \in V_{N} \\ x \neq y}} T_{N}(x, y)
$$

where

$$
T_{N}(x, y):=\mathbb{E}_{(x, y)}\left[\int_{0}^{\infty} \mathbf{1}\left(\mathcal{X}_{t N^{2}} \in \mathcal{D}_{N}^{+}\right) d t\right]
$$

is the time spent by the walk on the diagonal \mathcal{D}_{N}^{+}.

For estimating g_{t}^{N} we need to estimate the time spent by a $1-d$ RW at the points $x=1$ and $x=N-1$ and if it is the absorbed one, then this is of order $O\left(\frac{N^{\theta}}{N^{2}}\right)$ (good bound when $\theta<1$ but not when $\theta>1$). When $\theta>1$ we compare with the reflected RW and we prove that the time now is of order $O\left(\frac{1}{N}\right)$.

For estimating φ_{t}^{N} we also need the same type of estimates in the $2-d$ setting for the time spent by the RW on the diagonal \mathcal{D}_{N}^{+}. For $\theta<1$ we use the absorbed RW but for $\theta>1$ we use the reflected RW.

Partial Eैxclusion:

$\alpha \in \mathbb{N}, \lambda_{\ell}, \lambda_{r} \in(0,1]$ and $\rho_{\ell}, \rho_{r} \in(0, \alpha), \theta \in \mathbb{R}$.

Theorem [Franceschini, G., Salvador]:

Let $g:[0,1] \rightarrow[0,1]$ be a measurable function and let $\left\{\mu_{N}\right\}_{N \geq 1}$ be a sequence of probability measures in Ω_{N} associated to $g(\cdot)$. Then, for any $0 \leq t \leq T$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\mu_{N}}\left(\left|\frac{1}{N} \sum_{x \in \Lambda_{N}} H\left(\frac{x}{N}\right) \eta_{t N^{2}}(x)-\int_{0}^{1} H(q) \rho(t, q) d q\right|>\delta\right)=0
$$

and $\rho_{t}(\cdot)$ is the UNIQUE weak solution of the heat equation $\partial_{t} \rho_{t}(q)=\alpha \partial_{q}^{2} \rho_{t}(q)$ with
\& $\theta>1$ Neumann b.c.: $\partial_{q} \rho_{t}(0)=\partial_{q} \rho_{t}(1)=0$.
\& $\theta=1$ Robin b.c.:

$$
\partial_{q} \rho_{t}(0)=\lambda^{\ell}\left(\rho_{t}(0)-\rho^{\ell}\right) \quad \partial_{q} \rho_{t}(1)=\lambda^{r}\left(\rho^{r}-\rho_{t}(1)\right) .
$$

\& $\theta<1$ Dirichlet b.c.: $\rho_{t}(0)=\rho^{\ell}, \rho_{t}(1)=\rho^{r}$.

It would be natural to extend φ_{t}^{N} to the diagonal by

$$
\varphi_{t}^{N}(x, x):=\mathbb{E}_{\mu^{N}}\left[\left(\eta_{t N^{2}}(x)-\rho_{t}^{N}(x)\right)^{2}\right]
$$

A more convenient definition is to extend it as

$$
\varphi_{t}^{N}(x, x):=\mathbb{E}_{\mu^{N}}\left[\frac{\alpha}{\alpha-1} \eta_{t N^{2}}(x)\left(\eta_{t N^{2}}(x)-1\right)-\rho_{t}^{N}(x)^{2}\right] .
$$

In this case we also have

$$
\left\{\begin{array}{l}
\partial_{t} \varphi_{t}^{N}(x, y)=N^{2} \mathcal{A}_{N}^{\theta} \varphi_{t}^{N}(x, y)-\left(\nabla_{N}^{+} \rho_{t}^{N}(x)\right)^{2} \delta_{y=x+1},(x, y) \in V_{N} \\
\varphi_{t}^{N}(x, y)=0,(x, y) \in \partial V_{N} \\
\varphi_{0}^{N}(x, y)=\mathbb{E}_{\mu_{N}}\left[\eta_{0}(x) \eta_{0}(y)\right]-\rho_{0}^{N}(x) \rho_{0}^{N}(y),(x, y) \in V_{N} \cup \partial V_{N}
\end{array}\right.
$$

but the operator \mathcal{A}_{N}^{θ} is different from the one in $\operatorname{SEP}(1)$.

Another $\mathscr{R} W$

(I JUMP TO THE BOARD NOW!).

We expect the same behavior as $\theta \in[0,1)$ - DIRICHLET!
In this case the space of test functions that we take is δ_{θ} composed of functions $H \in C^{\infty}([0,1])$ such that for any $k \in \mathbb{N} \cup\{0\}$ it holds $\partial_{u}^{k} H(0)=\partial_{u}^{k} H(1)=0$.
Now all the derivatives are null at the boundary!!! Our result says that if $\theta<0$, the sequence $\left\{\mathfrak{Q}_{N}\right\}_{N \in \mathbb{N}}$ converges, as $N \rightarrow+\infty$, to the generalized Ornstein-Uhlenbeck process as in the case $\theta \in[0,1)$ since \mathscr{Y}_{t} satisfies the conditions:
(1) regularity condition: $\mathbb{E}\left[\left(\mathscr{Y}_{t}(H)\right)^{2}\right] \lesssim\|H\|_{L^{2}}$, for any $H \in \delta_{\theta}$;
(2) boundary condition: for any $t \in[0, T]$ and $j \in\{0,1\}$, it holds that

$$
\lim _{\epsilon \rightarrow 0} \mathbb{E}_{\mu_{N}}\left[\left(\int_{0}^{t} \mathscr{Y}_{s}\left(\iota_{\epsilon}^{j}\right) d s\right)^{2}\right]=0
$$

where for $u \in[0,1]$ and: $j=0, \iota_{\epsilon}^{0}(u):=\epsilon^{-1} \mathbf{1}_{(0, \epsilon]}(u)$ and, for $j=1, \iota_{\epsilon}^{1}(u):=\epsilon^{-1} \mathbf{1}_{[1-\epsilon, 1)}(u)$.

And now?

(1) Estimates for k-points correlations?
(1) How to define the correlation function?
(2) How to control static equations?
(3) Is the bound equal to $\operatorname{SEP}(1)$?
(2) What about other models with duality?

$$
\begin{aligned}
& \text { Thank you! } \\
& \text { Merci! } \\
& \text { Obrigada! }
\end{aligned}
$$

