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Motivation: to have a particle system with an asymmetric bulk but

also an open boundary with duality property.

Idea: start with a symmetric bulk and a close boundary with

duality property.

bulk: one dimensional finite chain ⇤N = {1, . . . ,N � 1}
symmetric bulk: no preference to go left or right (nearest neighbors)

close boundary: no injection nor absorption of particles (conservation)

This idea goes back to Kipnis-Marchioro-Presutti in 1982.
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KMP 1982

L
KMP

= Lleft +
P

i2⇤N
Li,i+1 + Lright where

Li,i+1f (z) =
Z 1

0
dp


f (z1, . . . , p(zi + zi+1), (1� p)(zi + zi+1), . . . zN)� f (z)

�

Lleft f (z) =
Z 1

0
dz

0
1
e
�z01/T�

T�
[f (z

0
1, . . . , zN)� f (z)]

Lright f (z) =
Z 1

0
dz

0
N
e
�z01/T+

T+
[f (z1, . . . , z

0
N)� f (z)]

for z 2 R⇤N
+ , zi represents the energy at site i

After the redistribution: with p ⇠ U ([0, 1])
z
0
i = p(zi + zi+1) is the new energy at site i and

z
0
i+1 = (1� p)(zi + zi+1) is the new energy at site i + 1

They proved the Fourier’s law: Q = �dT (u)

dt
, u 2 (0, 1)
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Duality property

Definition

Let (zt)t�0 and (⇠t)t�0 two Markov processes on ⌦ and ⌦
dual

with

generators L and L
dual

, respectively. zt is dual to ⇠t with duality function

D : ⌦⇥ ⌦
dual ! R if 8t � 0 ,

Ez(D(zt , ⇠)) = E⇠(D(z , ⇠t)) 8(z , ⇠) 2 ⌦⇥ ⌦
dual .

Equivalently,

LD(·, ⇠)(z) = L
dual

D(z , ·)(⇠)

Duality enables to connect, via a duality function, the process of

interest to another one which is a simpler process.
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Symmetric Brownian Energy Process

The symmetric BEP is an interacting di↵usion process which describes the

symmetric energy exchange between nearest neighboring sites and it

conserves the total energy of the chain. Let zi represent the energy at site

i 2 ⇤N , z 2 R⇤N
+ , and s > 0.

L
BEP

=

N�1X

i=1

Li ,i+1 where the local generator is

Li ,i+1 = zizi+1

✓
@

@zi
� @

@zi+1

◆2

� 2s (zi � zi+1)

✓
@

@zi
� @

@zi+1

◆

REMARK: The symmetric BEP is obtained as a rescaling of the

Symmetric Inclusion Process (SIP)
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Adding an open boundary

Motivation comes from non-equilibrium statistical mechanics: open
processes with boundary reservoirs whose role is to destroy the

conservation of particles/energy and create a flux into the bulk:

L = Lleft + Lbulk + Lright

Lleft and Lright are chosen such that in equilibrium there still is reversibility.

But in general, the processes now are no longer reversible.
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Open BEP [Giardinà, Redig, Kurchan 2008]

The generator is L
BEP

= Lleft +
PN

i=1 Li ,i+1 + Lright where

Lleft = T�
�
2s@z1 + z1@

2
z1

�
� 1

2
z1@z1

Lright = T+
�
2s@zN + zN@

2
zN

�
� 1

2
zN@zN

Invariant measure in equilibrium (T� = T+ = T ):
Homogeneous product of Gamma distribution with shape parameter

2s > 0 and scale parameter T > 0

µN,T (z) =

NY

i=1

z
2s�1
i

�(2s)

e
�zi/T

T 2s

Invariant measure in non-equilibrium (T� 6= T+): µN,T�,T+ ?
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Thermalization limit: from BEP(2s) to KMP

Thermalization procedure: consider the bond (i , i + 1) and then

redistribute the energies on that bond, zi and zi+1 according to the

stationary measure of the bond, conditioning to the conservation of the

total energy of the bond. For the BEP zi and zi+1 are independent

Gamma (2s,T ), then

zx

zx + zx+1
|zx + zx+1 = E ⇠ Beta(2s, 2s)

Then for s = 1/2 you get the uniform distribution [0, 1] for the bulk.

For the boundary, the stationary distribution of the Brownian Energy

reservoir is also Gamma (2s,T ) then for s = 1/2 one gets the exponential

distribution with parameter 1/T .

Chiara Franceschini 8 / 24



Asymmetric Brownian Energy Process: xt

Introduced without boundary in 2016 by Carinci, Giardinà, Redig and

Sasamoto.

LABEP
=

N�1X

i=1

LABEP
i ,i+1

where, for i 2 ⇤N , the action on smooth functions f : R⇤N
+ ! R is

⇥
LABEP
i ,i+1 f

⇤
(x) =

1

2�2

�
1� e

��xi
�
(e

�xi+1 � 1)

✓
@

@xi+1
� @

@xi

◆2

f (x)

+
1

�

✓�
1� e

��xi
�
(e

�xi+1 � 1) + 2s
�
2� e

��xi � e
�xi+1

�◆
·

·
✓

@

@xi+1
� @

@xi

◆
f (x)

REMARK: for � ! 0 then ABEP ! BEP .
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��xi
�
(e

�xi+1 � 1) + 2s
�
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BEP ! ABEP ?

Definition

We define the map g : R⇤N
+ ! R⇤N

+ via

g(x) = (gi (x))i2⇤N
with gi (x) :=

e
��Ei+1(x) � e

��Ei (x)

�

where Ei (x) denotes the energy of the system at the right of site i 2 ⇤N ,

i.e.

Ei (x) =

NX

`=i

x` for i = 1, . . . ,N with EN+1(x) = 0 .

Thanks to this map, we have several results.
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Zi = gi(x)
Th

.
Limit

ABEP (25, 5) BEP(2s)
S = 1
z

KMP

Ut & 0 Zt

Da D D

Th
.
Limit

SIP(2s) KMPdual
S = 1
zSt



Results via the non-local map g

The ABEP can be found for all i 2 ⇤N as

⇥
L
BEP
i ,i+1f

⇤
(g (x)) =

⇥
LABEP
i ,i+1 f � g

⇤
(x)

This implies the following nice properties

Reversibility for ABEP:

µABEP
N,T (x) = µBEP

N,T (g (x))

= exp

(
e
��E(x) � 1

�T

)
NY

i=1

(1� e
��xi )(2s�1)

�(2s)�2s�1T 2s
e
��xi (2s(i�1)+1)

Duality for ABEP:

D
ABEP
� (x , ⇠) = D

BEP
((g (x)) , ⇠)

where ⇠t is the Symmetric Inclusion Process with absorbing boundary.
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Symmetric Inclusion Process: bulk

The SIP describes particles jumping to nearest neighbor sites with an

inclusion interaction. Let ⇠i represent the number of particles at site

i 2 ⇤N , ⇠ 2 N⇤N , and s > 0.

L
SIP

=

N�1X

i=1

Li ,i+1 where the action on functions is

Li ,i+1f (⇠) = ⇠i (2s + ⇠i+1)
⇥
f (⇠i ,i+1

)� f (⇠)
⇤

+ ⇠i+1(2s + ⇠i )
⇥
f (⇠i+1,1

)� f (⇠)
⇤

Above ⇠i ,j := ⇠ � �i + �j
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Dual SIP

The generator is L
dual

= Lleft +
P

i2⇤N
Li ,i+1 + Lright where

Li ,i+1 = is the bulk of the SIP

Lleft = ⇠1
⇥
f (⇠1,0)� f (⇠)

⇤

Lright = ⇠N
h
f (⇠N,N+1

)� f (⇠)
i

the dual process is only absorbing.

the dual process conserves the total number of particles: ⇠ 2 N0[⇤N[N+1

Chiara Franceschini 14 / 24



Dual SIP

The generator is L
dual

= Lleft +
P

i2⇤N
Li ,i+1 + Lright where

Li ,i+1 = is the bulk of the SIP

Lleft = ⇠1
⇥
f (⇠1,0)� f (⇠)

⇤

Lright = ⇠N
h
f (⇠N,N+1

)� f (⇠)
i

the dual process is only absorbing.

the dual process conserves the total number of particles: ⇠ 2 N0[⇤N[N+1

Chiara Franceschini 14 / 24



Duality results 1

Let D(z , ⇠) =
NY

i=1

d(zi , ⇠i ) then

Theorem

L
BEP

and L
SIP

are dual with:

d
cl
(z , ⇠) =

z
⇠

�(⇠ + 2s)
and d

or
(z , ⇠) = (�T )

⇠
1F1

✓
�⇠

2s

����
z

T

◆

Above 1F1
� �n

↵

�� y
�
is a Laguerre polynomial in y of degree n and ↵ > 0.

These two results were proved in many past works via di↵erent techniques

by several people: Carinci, Floreani, F., Giardinà, Kurchan, Redig, Sau,

Vafayi.
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Duality results 2

Theorem

Open BEP and absorbing SIP are dual with:

D
cl
(z , ⇠) = (T�)

⇠0
NY

i=1

d
cl
(zi , ⇠i ) (T+)

⇠N+1 and

D
or
(z , ⇠) = (T� � T )

⇠0
NY

i=1

d
or
(zi , ⇠i ) (T+ � T )

⇠N+1
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Theorem (Duality result 3, Carinci, Giardinà, Redig and Sasamoto)

LABEP
D

ABEP
� (·, ⇠)(x) = L

SIP
D

ABEP
� (x , ·)(⇠)

where the classical duality function, in particular, reads:

D
ABEP
� (x , ⇠) =

NY

i=1

1

�(2s + ⇠i )

 
e
��Ei+1(x) � e

��Ei (x)

�

!⇠i

The dual process is the same: the symmetric inclusion process!

REMARK: The dependence on the asymmetry parameter � > 0 only

appears in LABEP
and D

ABEP
� .

Can we generalize this even further by adding two reservoirs at sites

i = 0 and i = N + 1 ?
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Open ABEP

LABEP
= LABEP

left + LABEP
bulk + LABEP

right

where

[LABEP
left f ](x) = T�

✓
e
�E(x)

(2s � 1 + e
�x1)

@

@x1
+

e
�E(x)

�
(e

�x1 � 1)
@2

@x21

◆
f (x)

� e
�x1 � 1

�

@

@x1
f (x) and

[LABEP
right f ](x) =

✓
2sT+ � 1� e

��xN

�

◆ NX

l=1

e
�El (x)

�
@xl � @xl�1

�
f (x)

+T+
1� e

��xN

�

NX

l,j=1

e
�(El (x)+Ej (x))

�
@xl � @xl�1

� �
@xj � @xj�1

�
f (x)

+ T+

�
1� e

��xN
� NX

l=1

e
2�El (x)

�
@xl � @xl�1

�
f (x)
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�
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� �
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1� e
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Duality result 4

Theorem (Carinci, Casini, F. 2023)

The ABEP(2s,�) with open boundary is dual to the SIP(2s) with only

absorbing reservoirs with respect to the following duality function

D�(x , ⇠) = (T�)
⇠0 ·

NY

i=1

1

�(2s + ⇠i )
(gi (x))

⇠i · (T+)
⇠N+1

What can we do with it?

We can compute “moments” using the definition of duality,

Ex
⇥
D(xt , ⇠)

⇤
= E⇠

⇥
D(x , ⇠t)

⇤
where we choose ⇠ = �i

Chiara Franceschini 19 / 24



Duality scheme
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Exponential moments with respect to the stationary
measure µss

D�(x , �i ) =
�(2s)

�(2s + 1)
gi (x) =

e
��Ei+1(x) � e

��Ei (x)

2s �

Because of duality

EµssD�(x , �i ) = lim
t!+1

ExD�(xt , �i ) = lim
t!+1

E�iD�(x , �i(t)) =

D�(x , �0)| {z }
T�

P�i

�
�i(1) = �0

�
| {z }

1� i
N+1

+D�(x , �N+1)| {z }
T+

P�i

�
�i(1) = �N+1

�
| {z }

i
N+1

Namely,

Eµss

"
e
��Ei+1(x) � e

��Ei (x)

2s �

#
= T� +

i

N + 1
(T+ � T�)
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Comparison with the symmetric case

D(z , �i ) =
�(2s)

�(2s + 1)
zi =

zi

2s

Because of duality

EµssD(z , �i ) = lim
t!+1

EzD(zt , �i ) = lim
t!+1

E�iD(x , �i(t)) =

D(z , �0)| {z }
T�

P�i

�
�i(1) = �0

�
| {z }

1� i
N+1

+D(z , �N+1)| {z }
T+

P�i

�
�i(1) = �N+1

�
| {z }

i
N+1

Namely,

Eµss

h
zi

2s

i
= T� +

i

N + 1
(T+ � T�)
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Cole-Hopf/Gärtner transformation

Eµss

"
e
��Ei+1(x) � e

��Ei (x)

2s �

#
= T� +

i

N + 1
(T+ � T�)

Summing on both sides from m to N we finally get

Eµss

h
e
��Em(x)

i
= 1� 2s �T�(N �m + 1)

+
2s �

N + 1
(T+ � T�)

(m + N)(m � N � 1)

2
.

We can push this up to two points correlations
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Cole-Hopf/Gärtner transformation

For i 6= j

Eµss


gi (x)

2s �

gj(x)

2s �

�
� Eµss


gi (x)

2s �

�
Eµss


gj(x)

2s �

�

= (T� � T+)
2 i

(N + 1)2

N + 1� j

2s(N + 1) + 1

This gives information on Eµss

⇥
e
��Em(x)e��En(x)

⇤

This suggests that this transformation allows to go from heat equation to

Burger equation, similarly to the case of exclusion process.

Thanks for the attention!
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