Duality for a boundary driven asymmetric model of energy transport

Chiara Franceschini
University of Modena and Reggio Emilia
Joint work with Gioia Carinci and Francesco Casini
Inhomogeneous Random Systems
Paris, January 24, 2024

Motivation: to have a particle system with an asymmetric bulk but also an open boundary with duality property.

Motivation: to have a particle system with an asymmetric bulk but also an open boundary with duality property.

Idea: start with a symmetric bulk and a close boundary with duality property.

Motivation: to have a particle system with an asymmetric bulk but also an open boundary with duality property.

Idea: start with a symmetric bulk and a close boundary with duality property.

- bulk: one dimensional finite chain $\Lambda_{N}=\{1, \ldots, N-1\}$
- symmetric bulk: no preference to go left or right (nearest neighbors)
- close boundary: no injection nor absorption of particles (conservation)

This idea goes back to Kipnis-Marchioro-Presutti in 1982.

KMP 1982

$$
L^{K M P}=L_{\text {left }}+\sum_{i \in \Lambda_{N}} L_{i, i+1}+L_{\text {right }} \quad \text { where }
$$

$$
\begin{aligned}
L_{i, i+1} f(\mathbf{z}) & =\int_{0}^{1} d p\left[f\left(z_{1}, \ldots, p\left(z_{i}+z_{i+1}\right),(1-p)\left(z_{i}+z_{i+1}\right), \ldots z_{N}\right)-f(\mathbf{z})\right] \\
L_{\text {left }} f(\mathbf{z}) & =\int_{0}^{\infty} d z_{1}^{\prime} \frac{e^{-z_{1}^{\prime} / T_{-}}}{T_{-}}\left[f\left(z_{1}^{\prime}, \ldots, z_{N}\right)-f(\mathbf{z})\right] \\
L_{\text {right }} f(\mathbf{z}) & =\int_{0}^{\infty} d z_{N}^{\prime} \frac{e^{-z_{1}^{\prime} / T_{+}}}{T_{+}}\left[f\left(z_{1}, \ldots, z_{N}^{\prime}\right)-f(\mathbf{z})\right]
\end{aligned}
$$

for $z \in \mathbb{R}_{+}^{\Lambda_{N}}, z_{i}$ represents the energy at site i
After the redistribution: with $p \sim U([0,1])$
$z_{i}^{\prime}=p\left(z_{i}+z_{i+1}\right)$ is the new energy at site i and
$z_{i+1}^{\prime}=(1-p)\left(z_{i}+z_{i+1}\right)$ is the new energy at site $i+1$

KMP 1982

$$
L^{K M P}=L_{\text {left }}+\sum_{i \in \Lambda_{N}} L_{i, i+1}+L_{\text {right }} \quad \text { where }
$$

$$
\begin{aligned}
L_{i, i+1} f(\mathbf{z}) & =\int_{0}^{1} d p\left[f\left(z_{1}, \ldots, p\left(z_{i}+z_{i+1}\right),(1-p)\left(z_{i}+z_{i+1}\right), \ldots z_{N}\right)-f(\mathbf{z})\right] \\
L_{\text {left }} f(\mathbf{z}) & =\int_{0}^{\infty} d z_{1}^{\prime} \frac{e^{-z_{1}^{\prime} / T_{-}}}{T_{-}}\left[f\left(z_{1}^{\prime}, \ldots, z_{N}\right)-f(\mathbf{z})\right] \\
L_{\text {right }} f(\mathbf{z}) & =\int_{0}^{\infty} d z_{N}^{\prime} \frac{e^{-z_{1}^{\prime} / T_{+}}}{T_{+}}\left[f\left(z_{1}, \ldots, z_{N}^{\prime}\right)-f(\mathbf{z})\right]
\end{aligned}
$$

for $z \in \mathbb{R}_{+}^{\Lambda_{N}}, z_{i}$ represents the energy at site i
After the redistribution: with $p \sim U([0,1])$
$z_{i}^{\prime}=p\left(z_{i}+z_{i+1}\right)$ is the new energy at site i and
$z_{i+1}^{\prime}=(1-p)\left(z_{i}+z_{i+1}\right)$ is the new energy at site $i+1$
They proved the Fourier's law: $Q=-\frac{d T(u)}{d t}, \quad u \in(0,1)$

Duality property

Definition

Let $\left(z_{t}\right)_{t \geq 0}$ and $\left(\xi_{t}\right)_{t \geq 0}$ two Markov processes on Ω and $\Omega^{d u a l}$ with generators L and $L^{\text {dual }}$, respectively. z_{t} is dual to ξ_{t} with duality function $D: \Omega \times \Omega^{\text {dual }} \rightarrow \mathbb{R}$ if $\forall t \geq 0$,

$$
\mathbb{E}_{z}\left(D\left(z_{t}, \xi\right)\right)=\mathbb{E}_{\xi}\left(D\left(z, \xi_{t}\right)\right) \quad \forall(z, \xi) \in \Omega \times \Omega^{\text {dual }}
$$

Equivalently,

$$
L D(\cdot, \xi)(z)=L^{\text {dual }} D(z, \cdot)(\xi)
$$

Duality enables to connect, via a duality function, the process of interest to another one which is a simpler process.

Symmetric Brownian Energy Process

The symmetric BEP is an interacting diffusion process which describes the symmetric energy exchange between nearest neighboring sites and it conserves the total energy of the chain. Let z_{i} represent the energy at site $i \in \Lambda_{N}, \boldsymbol{z} \in \mathbb{R}_{+}^{\Lambda_{N}}$, and $s>0$.

$$
\begin{aligned}
L^{\mathrm{BEP}} & =\sum_{i=1}^{N-1} L_{i, i+1} \quad \text { where the local generator is } \\
L_{i, i+1} & =z_{i} z_{i+1}\left(\frac{\partial}{\partial z_{i}}-\frac{\partial}{\partial z_{i+1}}\right)^{2}-2 s\left(z_{i}-z_{i+1}\right)\left(\frac{\partial}{\partial z_{i}}-\frac{\partial}{\partial z_{i+1}}\right)
\end{aligned}
$$

REMARK: The symmetric BEP is obtained as a rescaling of the Symmetric Inclusion Process (SIP)

Adding an open boundary

Motivation comes from non-equilibrium statistical mechanics: open processes with boundary reservoirs whose role is to destroy the conservation of particles/energy and create a flux into the bulk:

$$
L=L_{\text {left }}+L_{\text {bulk }}+L_{\text {right }}
$$

$L_{\text {left }}$ and $L_{\text {right }}$ are chosen such that in equilibrium there still is reversibility.

But in general, the processes now are no longer reversible.

Open BEP [Giardinà, Redig, Kurchan 2008]

The generator is $L^{\mathrm{BEP}}=L_{\text {left }}+\sum_{i=1}^{N} L_{i, i+1}+L_{\text {right }}$ where

$$
\begin{aligned}
L_{\text {left }} & =T_{-}\left(2 s \partial_{z_{1}}+z_{1} \partial_{z_{1}}^{2}\right)-\frac{1}{2} z_{1} \partial_{z_{1}} \\
L_{\text {right }} & =T_{+}\left(2 s \partial_{z_{N}}+z_{N} \partial_{z_{N}}^{2}\right)-\frac{1}{2} z_{N} \partial_{z_{N}}
\end{aligned}
$$

- Invariant measure in equilibrium ($T_{-}=T_{+}=T$): Homogeneous product of Gamma distribution with shape parameter $2 s>0$ and scale parameter $T>0$

$$
\mu_{N, T}(z)=\prod_{i=1}^{N} \frac{z_{i}^{2 s-1}}{\Gamma(2 s)} \frac{e^{-z_{i} / T}}{T^{2 s}}
$$

Open BEP [Giardinà, Redig, Kurchan 2008]

The generator is $L^{\mathrm{BEP}}=L_{\text {left }}+\sum_{i=1}^{N} L_{i, i+1}+L_{\text {right }}$ where

$$
\begin{aligned}
L_{\text {left }} & =T_{-}\left(2 s \partial_{z_{1}}+z_{1} \partial_{z_{1}}^{2}\right)-\frac{1}{2} z_{1} \partial_{z_{1}} \\
L_{\text {right }} & =T_{+}\left(2 s \partial_{z_{N}}+z_{N} \partial_{z_{N}}^{2}\right)-\frac{1}{2} z_{N} \partial_{z_{N}}
\end{aligned}
$$

- Invariant measure in equilibrium ($T_{-}=T_{+}=T$): Homogeneous product of Gamma distribution with shape parameter $2 s>0$ and scale parameter $T>0$

$$
\mu_{N, T}(z)=\prod_{i=1}^{N} \frac{z_{i}^{2 s-1}}{\Gamma(2 s)} \frac{e^{-z_{i} / T}}{T^{2 s}}
$$

- Invariant measure in non-equilibrium $\left(T_{-} \neq T_{+}\right): \mu_{N, T_{-}, T_{+}}$?

Thermalization limit: from $\operatorname{BEP}(2 s)$ to KMP

Thermalization procedure: consider the bond $(i, i+1)$ and then redistribute the energies on that bond, z_{i} and z_{i+1} according to the stationary measure of the bond, conditioning to the conservation of the total energy of the bond. For the BEP z_{i} and z_{i+1} are independent Gamma ($2 s, T$), then

$$
\left.\frac{z_{x}}{z_{x}+z_{x+1}} \right\rvert\, z_{x}+z_{x+1}=E \sim \operatorname{Beta}(2 s, 2 s)
$$

Then for $s=1 / 2$ you get the uniform distribution $[0,1]$ for the bulk.
For the boundary, the stationary distribution of the Brownian Energy reservoir is also Gamma $(2 s, T)$ then for $s=1 / 2$ one gets the exponential distribution with parameter $1 / T$.

Asymmetric Brownian Energy Process: x_{t}

Introduced without boundary in 2016 by Carinci, Giardinà, Redig and Sasamoto.

$$
\mathcal{L}^{\mathrm{ABEP}}=\sum_{i=1}^{N-1} \mathcal{L}_{i, i+1}^{\mathrm{ABEP}}
$$

where, for $i \in \Lambda_{N}$, the action on smooth functions $f: \mathbb{R}_{+}^{\Lambda_{N}} \rightarrow \mathbb{R}$ is

Asymmetric Brownian Energy Process: x_{t}

Introduced without boundary in 2016 by Carinci, Giardinà, Redig and Sasamoto.

$$
\mathcal{L}^{\mathrm{ABEP}}=\sum_{i=1}^{N-1} \mathcal{L}_{i, i+1}^{\mathrm{ABEP}}
$$

where, for $i \in \Lambda_{N}$, the action on smooth functions $f: \mathbb{R}_{+}^{\Lambda_{N}} \rightarrow \mathbb{R}$ is

$$
\begin{aligned}
{\left[\mathcal{L}_{i, i+1}^{\mathrm{ABEP}} f\right] } & (\boldsymbol{x})
\end{aligned}=\frac{1}{2 \sigma^{2}}\left(1-e^{-\sigma x_{i}}\right)\left(e^{\sigma x_{i+1}}-1\right)\left(\frac{\partial}{\partial x_{i+1}}-\frac{\partial}{\partial x_{i}}\right)^{2} f(\boldsymbol{x}) .
$$

Asymmetric Brownian Energy Process: x_{t}

Introduced without boundary in 2016 by Carinci, Giardinà, Redig and Sasamoto.

$$
\mathcal{L}^{\mathrm{ABEP}}=\sum_{i=1}^{N-1} \mathcal{L}_{i, i+1}^{\mathrm{ABEP}}
$$

where, for $i \in \Lambda_{N}$, the action on smooth functions $f: \mathbb{R}_{+}^{\Lambda_{N}} \rightarrow \mathbb{R}$ is

$$
\begin{aligned}
& {\left[\mathcal{L}_{i, i+1}^{\mathrm{ABEP}} f\right](\boldsymbol{x})=\frac{1}{2 \sigma^{2}}\left(1-e^{-\sigma x_{i}}\right)\left(e^{\sigma x_{i+1}}-1\right)\left(\frac{\partial}{\partial x_{i+1}}-\frac{\partial}{\partial x_{i}}\right)^{2} f(\boldsymbol{x})} \\
& \quad+\frac{1}{\sigma}\left(\left(1-e^{-\sigma x_{i}}\right)\left(e^{\sigma x_{i+1}}-1\right)+2 s\left(2-e^{-\sigma x_{i}}-e^{\sigma x_{i+1}}\right)\right) . \\
& \quad \cdot\left(\frac{\partial}{\partial x_{i+1}}-\frac{\partial}{\partial x_{i}}\right) f(\boldsymbol{x})
\end{aligned}
$$

REMARK: for $\sigma \rightarrow 0$ then $A B E P \rightarrow B E P$.
$B E P \rightarrow A B E P$?

$B E P \rightarrow A B E P$?

Definition

We define the map $g: \mathbb{R}_{+}^{\Lambda_{N}} \rightarrow \mathbb{R}_{+}^{\Lambda_{N}}$ via

$$
g(x)=\left(g_{i}(x)\right)_{i \in \Lambda_{N}} \quad \text { with } \quad g_{i}(x):=\frac{e^{-\sigma E_{i+1}(x)}-e^{-\sigma E_{i}(x)}}{\sigma}
$$

where $E_{i}(x)$ denotes the energy of the system at the right of site $i \in \Lambda_{N}$, i.e.

$$
E_{i}(x)=\sum_{\ell=i}^{N} x_{\ell} \quad \text { for } \quad i=1, \ldots, N \quad \text { with } \quad E_{N+1}(x)=0
$$

Thanks to this map, we have several results.

Results via the non-local map g

The ABEP can be found for all $i \in \Lambda_{N}$ as

$$
\left[L_{i, i+1}^{\mathrm{BEP}} f\right](g(x))=\left[\mathcal{L}_{i, i+1}^{\mathrm{ABEP}} f \circ g\right](x)
$$

This implies the following nice properties

- Reversibility for ABEP:

$$
\begin{aligned}
\mu_{N, T}^{\mathrm{ABEP}}(x) & =\mu_{N, T}^{\mathrm{BEP}}(g(x)) \\
& =\exp \left\{\frac{e^{-\sigma E(x)}-1}{\sigma T}\right\} \prod_{i=1}^{N} \frac{\left(1-e^{-\sigma x_{i}}\right)^{(2 s-1)}}{\Gamma(2 s) \sigma^{2 s-1} T^{2 s}} e^{-\sigma x_{i}(2 s(i-1)+1)}
\end{aligned}
$$

- Duality for ABEP:

$$
D_{\sigma}^{\mathrm{ABEP}}(x, \xi)=D^{\mathrm{BEP}}((g(x)), \xi)
$$

where ξ_{t} is the Symmetric Inclusion Process with absorbing boundary.

Symmetric Inclusion Process: bulk

The SIP describes particles jumping to nearest neighbor sites with an inclusion interaction. Let ξ_{i} represent the number of particles at site $i \in \Lambda_{N}, \boldsymbol{\xi} \in \mathbb{N}^{\Lambda_{N}}$, and $s>0$.

$$
\begin{aligned}
L^{\text {SIP }} & =\sum_{i=1}^{N-1} L_{i, i+1} \quad \text { where the action on functions is } \\
L_{i, i+1} f(\xi) & =\xi_{i}\left(2 s+\xi_{i+1}\right)\left[f\left(\xi^{i, i+1}\right)-f(\xi)\right] \\
& +\xi_{i+1}\left(2 s+\xi_{i}\right)\left[f\left(\xi^{i+1,1}\right)-f(\xi)\right]
\end{aligned}
$$

Above $\boldsymbol{\xi}^{i, j}:=\boldsymbol{\xi}-\boldsymbol{\delta}_{i}+\boldsymbol{\delta}_{j}$

Dual SIP

The generator is $L^{\text {dual }}=L_{\text {left }}+\sum_{i \in \Lambda_{N}} L_{i, i+1}+L_{\text {right }}$ where

$$
\begin{aligned}
L_{i, i+1} & =\text { is the bulk of the SIP } \\
L_{\text {left }} & =\xi_{1}\left[f\left(\xi^{1,0}\right)-f(\boldsymbol{\xi})\right] \\
L_{\text {right }} & =\xi_{N}\left[f\left(\xi^{N, N+1}\right)-f(\xi)\right]
\end{aligned}
$$

Dual SIP

The generator is $L^{\text {dual }}=L_{\text {left }}+\sum_{i \in \Lambda_{N}} L_{i, i+1}+L_{\text {right }}$ where

$$
\begin{aligned}
L_{i, i+1} & =\text { is the bulk of the SIP } \\
L_{\text {left }} & =\xi_{1}\left[f\left(\xi^{1,0}\right)-f(\xi)\right] \\
L_{\text {right }} & =\xi_{N}\left[f\left(\xi^{N, N+1}\right)-f(\xi)\right]
\end{aligned}
$$

- the dual process is only absorbing.
- the dual process conserves the total number of particles: $\boldsymbol{\xi} \in \mathbb{N}^{0} \cup \Lambda_{N} \cup N+1$

Duality results 1

$$
\text { Let } D(z, \xi)=\prod_{i=1}^{N} d\left(z_{i}, \xi_{i}\right) \text { then }
$$

Theorem
L^{BEP} and L^{SIP} are dual with:

$$
d^{c l}(z, \xi)=\frac{z^{\xi}}{\Gamma(\xi+2 s)} \quad \text { and } \quad d^{o r}(z, \xi)=(-T)^{\xi}{ }_{1} F_{1}\left(\begin{array}{c|c}
-\xi & z \\
2 s & \frac{z}{T}
\end{array}\right)
$$

Above ${ }_{1} F_{1}\left(\left.\begin{array}{c}-n \\ \alpha\end{array} \right\rvert\, y\right)$ is a Laguerre polynomial in y of degree n and $\alpha>0$.
These two results were proved in many past works via different techniques by several people: Carinci, Floreani, F., Giardinà, Kurchan, Redig, Sau, Vafayi.

Duality results 2

Theorem
Open BEP and absorbing SIP are dual with:

$$
\begin{aligned}
& D^{c l}(z, \xi)=\left(T_{-}\right)^{\xi_{0}} \prod_{i=1}^{N} d^{c l}\left(z_{i}, \xi_{i}\right)\left(T_{+}\right)^{\xi_{N+1}} \quad \text { and } \\
& D^{o r}(z, \xi)=\left(T_{-}-T\right)^{\xi_{0}} \prod_{i=1}^{N} d^{o r}\left(z_{i}, \xi_{i}\right) \quad\left(T_{+}-T\right)^{\xi_{N+1}}
\end{aligned}
$$

Theorem (Duality result 3, Carinci, Giardinà, Redig and Sasamoto)

$$
\mathcal{L}^{\mathrm{ABEP}} D_{\sigma}^{\mathrm{ABEP}}(\cdot, \xi)(x)=L^{\mathrm{SIP}} D_{\sigma}^{\mathrm{ABEP}}(x, \cdot)(\xi)
$$

where the classical duality function, in particular, reads:

$$
D_{\sigma}^{\mathrm{ABEP}}(x, \xi)=\prod_{i=1}^{N} \frac{1}{\Gamma\left(2 s+\xi_{i}\right)}\left(\frac{e^{-\sigma E_{i+1}(x)}-e^{-\sigma E_{i}(x)}}{\sigma}\right)^{\xi_{i}}
$$

The dual process is the same: the symmetric inclusion process!

REMARK: The dependence on the asymmetry parameter $\sigma>0$ only appears in $\mathcal{L}^{\text {ABEP }}$ and $D_{\sigma}^{\text {ABEP }}$.

Theorem (Duality result 3, Carinci, Giardinà, Redig and Sasamoto)

$$
\mathcal{L}^{\mathrm{ABEP}} D_{\sigma}^{\mathrm{ABEP}}(\cdot, \xi)(x)=L^{\mathrm{SIP}} D_{\sigma}^{\mathrm{ABEP}}(x, \cdot)(\xi)
$$

where the classical duality function, in particular, reads:

$$
D_{\sigma}^{\mathrm{ABEP}}(x, \xi)=\prod_{i=1}^{N} \frac{1}{\Gamma\left(2 s+\xi_{i}\right)}\left(\frac{e^{-\sigma E_{i+1}(x)}-e^{-\sigma E_{i}(x)}}{\sigma}\right)^{\xi_{i}}
$$

The dual process is the same: the symmetric inclusion process!

REMARK: The dependence on the asymmetry parameter $\sigma>0$ only appears in $\mathcal{L}^{\text {ABEP }}$ and $D_{\sigma}^{\text {ABEP }}$.

Can we generalize this even further by adding two reservoirs at sites

$$
i=0 \text { and } i=N+1 ?
$$

Open ABEP

$$
\mathcal{L}^{\mathrm{ABEP}}=\mathcal{L}_{\mathrm{left}}^{\mathrm{ABEP}}+\mathcal{L}_{\mathrm{bulk}}^{\mathrm{ABEP}}+\mathcal{L}_{\mathrm{right}}^{\mathrm{ABEP}}
$$

where

$$
\begin{aligned}
{\left[\mathcal{L}_{\mathrm{left}}^{\mathrm{ABEP}} f\right](\boldsymbol{x}) } & =T_{-}\left(e^{\sigma E(x)}\left(2 s-1+e^{\sigma x_{1}}\right) \frac{\partial}{\partial x_{1}}+\frac{e^{\sigma E(x)}}{\sigma}\left(e^{\sigma x_{1}}-1\right) \frac{\partial^{2}}{\partial x_{1}^{2}}\right) f(\boldsymbol{x}) \\
& -\frac{e^{\sigma x_{1}}-1}{\sigma} \frac{\partial}{\partial x_{1}} f(\boldsymbol{x}) \quad \text { and }
\end{aligned}
$$

Open ABEP

$$
\mathcal{L}^{\mathrm{ABEP}}=\mathcal{L}_{\mathrm{left}}^{\mathrm{ABEP}}+\mathcal{L}_{\mathrm{bulk}}^{\mathrm{ABEP}}+\mathcal{L}_{\text {right }}^{\mathrm{ABEP}}
$$

where

$$
\begin{aligned}
{\left[\mathcal{L}_{\mathrm{left}}^{\mathrm{ABEP}} f\right](\boldsymbol{x}) } & =T_{-}\left(e^{\sigma E(x)}\left(2 s-1+e^{\sigma x_{1}}\right) \frac{\partial}{\partial x_{1}}+\frac{e^{\sigma E(x)}}{\sigma}\left(e^{\sigma x_{1}}-1\right) \frac{\partial^{2}}{\partial x_{1}^{2}}\right) f(\boldsymbol{x}) \\
& -\frac{e^{\sigma x_{1}}-1}{\sigma} \frac{\partial}{\partial x_{1}} f(\boldsymbol{x}) \quad \text { and }
\end{aligned}
$$

$$
\begin{aligned}
{\left[\mathcal{L}_{\text {right }}^{\mathrm{ABEP}} f\right](x) } & =\left(2 s T_{+}-\frac{1-e^{-\sigma x_{N}}}{\sigma}\right) \sum_{l=1}^{N} e^{\sigma E_{l}(x)}\left(\partial_{x_{l}}-\partial_{x_{l-1}}\right) f(\boldsymbol{x}) \\
+ & T_{+} \frac{1-e^{-\sigma x_{N}}}{\sigma} \sum_{l, j=1}^{N} e^{\sigma\left(E_{l}(x)+E_{j}(x)\right)}\left(\partial_{x_{l}}-\partial_{x_{l-1}}\right)\left(\partial_{x_{j}}-\partial_{x_{j-1}}\right) f(\boldsymbol{x}) \\
& +T_{+}\left(1-e^{-\sigma x_{N}}\right) \sum_{l=1}^{N} e^{2 \sigma E_{l}(x)}\left(\partial_{x_{l}}-\partial_{x_{l-1}}\right) f(\boldsymbol{x})
\end{aligned}
$$

Duality result 4

Theorem (Carinci, Casini, F. 2023)
The $\operatorname{ABEP}(2 s, \sigma)$ with open boundary is dual to the $\operatorname{SIP}(2 s)$ with only absorbing reservoirs with respect to the following duality function

$$
D_{\sigma}(x, \xi)=\left(T_{-}\right)^{\xi_{0}} \cdot \prod_{i=1}^{N} \frac{1}{\Gamma\left(2 s+\xi_{i}\right)}\left(g_{i}(x)\right)^{\xi_{i}} \cdot\left(T_{+}\right)^{\xi_{N+1}}
$$

What can we do with it?

We can compute "moments" using the definition of duality,

$$
\mathbb{E}_{x}\left[D\left(x_{t}, \xi\right)\right]=\mathbb{E}_{\xi}\left[D\left(x, \xi_{t}\right)\right] \text { where we choose } \xi=\delta_{i}
$$

Duality scheme

Exponential moments with respect to the stationary

 measure $\mu_{\text {ss }}$$$
D_{\sigma}\left(x, \delta_{i}\right)=\frac{\Gamma(2 s)}{\Gamma(2 s+1)} g_{i}(x)=\frac{e^{-\sigma E_{i+1}(x)}-e^{-\sigma E_{i}(x)}}{2 s \sigma}
$$

Because of duality

$$
\begin{aligned}
& \mathbb{E}_{\mu_{5 s} D_{\sigma}\left(x, \delta_{i}\right)=\lim _{t \rightarrow+\infty} \mathbb{E}_{x} D_{\sigma}\left(x_{t}, \delta_{i}\right)=\lim _{t \rightarrow+\infty} \mathbb{E}_{\delta_{i}} D_{\sigma}\left(x, \delta_{i(t)}\right)=}^{\underbrace{D_{\sigma}\left(x, \delta_{0}\right)}_{T_{-}} \underbrace{P_{\delta_{i}}\left(\delta_{i(\infty)}=\delta_{0}\right)}_{1-\frac{i}{N+1}}+\underbrace{D_{\sigma}\left(x, \delta_{N+1}\right)}_{T_{+}} \underbrace{\mathbb{P}_{\delta_{i}}\left(\delta_{i(\infty)}=\delta_{N+1}\right)}_{\frac{i}{N+1}}}
\end{aligned}
$$

Namely,

$$
\mathbb{E}_{\mu_{s s}}\left[\frac{e^{-\sigma E_{i+1}(x)}-e^{-\sigma E_{i}(x)}}{2 s \sigma}\right]=T_{-}+\frac{i}{N+1}\left(T_{+}-T_{-}\right)
$$

Comparison with the symmetric case

$$
D\left(z, \delta_{i}\right)=\frac{\Gamma(2 s)}{\Gamma(2 s+1)} z_{i}=\frac{z_{i}}{2 s}
$$

Because of duality

$$
\begin{aligned}
& \mathbb{E}_{\mu_{s 5}} D\left(z, \delta_{i}\right)=\lim _{t \rightarrow+\infty} \mathbb{E}_{z} D\left(z_{t}, \delta_{i}\right)=\lim _{t \rightarrow+\infty} \mathbb{E}_{\delta_{i}} D\left(x, \delta_{i(t)}\right)= \\
& \underbrace{D\left(z, \delta_{0}\right)}_{T_{-}} \underbrace{\mathbb{P}_{\delta_{i}}\left(\delta_{i(\infty)}=\delta_{0}\right)}_{1-\frac{i}{N+1}}+\underbrace{D\left(z, \delta_{N+1}\right)}_{T_{+}} \underbrace{\mathbb{P}_{\delta_{i}}\left(\delta_{i(\infty)}=\delta_{N+1}\right)}_{\frac{i}{N+1}}
\end{aligned}
$$

Namely,

$$
\mathbb{E}_{\mu_{\mathrm{ss}}}\left[\frac{z_{i}}{2 s}\right]=T_{-}+\frac{i}{N+1}\left(T_{+}-T_{-}\right)
$$

Cole-Hopf/Gärtner transformation

$$
\mathbb{E}_{\mu_{s s}}\left[\frac{e^{-\sigma E_{i+1}(x)}-e^{-\sigma E_{i}(x)}}{2 s \sigma}\right]=T_{-}+\frac{i}{N+1}\left(T_{+}-T_{-}\right)
$$

Summing on both sides from m to N we finally get

$$
\begin{aligned}
\mathbb{E}_{\mu_{s s}}\left[e^{-\sigma E_{m}(x)}\right] & =1-2 s \sigma T_{-}(N-m+1) \\
& +\frac{2 s \sigma}{N+1}\left(T_{+}-T_{-}\right) \frac{(m+N)(m-N-1)}{2}
\end{aligned}
$$

We can push this up to two points correlations

Cole-Hopf/Gärtner transformation

For $i \neq j$

$$
\begin{aligned}
\mathbb{E}_{\mu_{\mathrm{ss}}}\left[\frac{g_{i}(x)}{2 s \sigma} \frac{g_{j}(x)}{2 s \sigma}\right] & -\mathbb{E}_{\mu_{\mathrm{ss}}}\left[\frac{g_{i}(x)}{2 s \sigma}\right] \mathbb{E}_{\mu_{\mathrm{ss}}}\left[\frac{g_{j}(x)}{2 s \sigma}\right] \\
& =\left(T_{-}-T_{+}\right)^{2} \frac{i}{(N+1)^{2}} \frac{N+1-j}{2 s(N+1)+1}
\end{aligned}
$$

This gives information on $\mathbb{E}_{\mu_{s s}}\left[e^{-\sigma E_{m}(x)} e^{-\sigma E_{n}(x)}\right]$

Cole-Hopf/Gärtner transformation

For $i \neq j$

$$
\begin{aligned}
\mathbb{E}_{\mu_{s s}}\left[\frac{g_{i}(x)}{2 s \sigma} \frac{g_{j}(x)}{2 s \sigma}\right] & -\mathbb{E}_{\mu_{s s}}\left[\frac{g_{i}(x)}{2 s \sigma}\right] \mathbb{E}_{\mu_{s s}}\left[\frac{g_{j}(x)}{2 s \sigma}\right] \\
& =\left(T_{-}-T_{+}\right)^{2} \frac{i}{(N+1)^{2}} \frac{N+1-j}{2 s(N+1)+1}
\end{aligned}
$$

This gives information on $\mathbb{E}_{\mu_{s s}}\left[e^{-\sigma E_{m}(x)} e^{-\sigma E_{n}(x)}\right]$
This suggests that this transformation allows to go from heat equation to Burger equation, similarly to the case of exclusion process.

Cole-Hopf/Gärtner transformation

For $i \neq j$

$$
\begin{aligned}
\mathbb{E}_{\mu_{s s}}\left[\frac{g_{i}(x)}{2 s \sigma} \frac{g_{j}(x)}{2 s \sigma}\right] & -\mathbb{E}_{\mu_{s s}}\left[\frac{g_{i}(x)}{2 s \sigma}\right] \mathbb{E}_{\mu_{s s}}\left[\frac{g_{j}(x)}{2 s \sigma}\right] \\
& =\left(T_{-}-T_{+}\right)^{2} \frac{i}{(N+1)^{2}} \frac{N+1-j}{2 s(N+1)+1}
\end{aligned}
$$

This gives information on $\mathbb{E}_{\mu_{s s}}\left[e^{-\sigma E_{m}(x)} e^{-\sigma E_{n}(x)}\right]$
This suggests that this transformation allows to go from heat equation to Burger equation, similarly to the case of exclusion process.

Thanks for the attention!

