At the transition between pulled and pushed fronts

Bernard Derrida

Collège de France, Paris

Inhomogeneous Random Systems

Paris January, 242024

Collaborators

Eric Brunet ENS Paris
Julien Berestycki University of Oxford

Collaborators

Eric Brunet ENS Paris

Julien Berestycki University of Oxford

J Berestycki, E Brunet, B Derrida J. Phys. A 2017
Exact solution and precise asymptotics of a Fisher-KPP type front

B Derrida J. Stat. Phys. 2023
Cross-Overs of Bramson's Shift at the Transition Between Pulled and Pushed Fronts

Collaborators

Eric Brunet ENS Paris

Julien Berestycki University of Oxford

J Berestycki, E Brunet, B Derrida J. Phys. A 2017
Exact solution and precise asymptotics of a Fisher-KPP type front

B Derrida J. Stat. Phys. 2023
Cross-Overs of Bramson's Shift at the Transition Between Pulled and Pushed Fronts
J. An, C. Henderson, L Ryzhik preprints 2021-2022

Pushed, pulled and pushmi-pullyu fronts of the Burgers-FKPP equation Quantitative steepness, semi-FKPP reactions, and pushmi-pullyu fronts

Outline

Mean-field equations for

- the $\mathrm{N}-\mathrm{BBM} \quad$ (BBM = Branching Brownian Motion)
- the Fleming-Viot process
- Reaction-diffusion traveling equations

Pulled versus pushed fronts

The transition between pulled and pushed fronts
The large N corrections

Mean-field equations for

the N - BBM
the Fleming-Viot process
Reaction-diffusion traveling equations

The $\mathrm{N}-\mathrm{BBM}$

- N particles on a 1-d lattice
- The particles perform independent random walks
- The particles branch at rate λ
- At each branching event, the particle with lowest position is removed

Positions of the particles versus time

Positions of the particles versus time

Positions of the particles versus time
$n_{i}=$ the number of particles at the right of site i

$$
\frac{d\left\langle n_{i}\right\rangle}{d t}=\left\langle\left(n_{i-1}+(\lambda-2) n_{i}+n_{i+1}\right) \Theta\left(N-n_{i}\right)\right\rangle
$$

$\Theta(n)=1$ if $n \geq 1$ and 0 otherwise (non-linear evolution)
$n_{i}=$ the number of particles at the right of site i

$$
\frac{d\left\langle n_{i}\right\rangle}{d t}=\left\langle\left(n_{i-1}+(\lambda-2) n_{i}+n_{i+1}\right) \Theta\left(N-n_{i}\right)\right\rangle
$$

$\Theta(n)=1$ if $n \geq 1$ and 0 otherwise (non-linear evolution)
Mean-field approximation : $\quad u_{i}=\frac{\left\langle n_{i}\right\rangle}{N}$

$$
\begin{aligned}
\frac{d u_{i}}{d t} & =u_{i-1}+(\lambda-2) u_{i}+u_{i+1} & & \text { if } \quad u_{i}<1 \\
& =0 & & \text { if } \quad u_{i}=1
\end{aligned}
$$

(still non-linear)
$n_{i}=$ the number of particles at the right of site i

$$
\frac{d\left\langle n_{i}\right\rangle}{d t}=\left\langle\left(n_{i-1}+(\lambda-2) n_{i}+n_{i+1}\right) \Theta\left(N-n_{i}\right)\right\rangle
$$

$\Theta(n)=1$ if $n \geq 1$ and 0 otherwise (non-linear evolution)
Mean-field approximation : $\quad u_{i}=\frac{\left\langle n_{i}\right\rangle}{N}$

$$
\begin{aligned}
\frac{d u_{i}}{d t} & =u_{i-1}+(\lambda-2) u_{i}+u_{i+1} & & \text { if } \quad u_{i}<1 \\
& =0 & & \text { if } \quad u_{i}=1
\end{aligned}
$$

(still non-linear)
Continuous space version of the mean field approximation:

$$
\frac{d u}{d t}=\left\{\begin{array}{ccc}
\frac{d^{2} u}{d x^{2}}+u & \text { if } & u<1 \\
0 & \text { if } & u=1
\end{array}\right.
$$

Questions: the $\mathrm{N}-\mathrm{BBM}$

Continuous space version (and the mean field approximation)
describes the large N limit
a continuous family of steady state solutions
the solution selected depends on the initial condition
logarithmic Bramson's shift of the front position

Large N corrections
one velocity selected

$$
v_{\infty}-v_{N} \simeq \frac{A}{\log ^{2} N} \quad ; \quad D_{N} \simeq \frac{B}{\log ^{3} N}
$$

the $\mathrm{N}-\mathrm{BBM}$

$$
\frac{d u}{d t}=\left\{\begin{array}{ccc}
\frac{d^{2} u}{d x^{2}}+u & \text { if } & u<1 \\
0 & \text { if } & u=1
\end{array}\right.
$$

One family of traveling wave solutions indexed by the velocity v

$$
\begin{gathered}
u=W_{v}(x-v t) \quad \text { for } \quad v \geq 2 \\
W_{v}(x)=\frac{\gamma_{2} e^{-\gamma_{1} x}-\gamma_{1} e^{-\gamma_{2} x}}{\gamma_{2}-\gamma_{1}}
\end{gathered}
$$

where γ_{1} and γ_{2} are the two roots of $\gamma^{2}+v \gamma+1=0$

the $\mathrm{N}-\mathrm{BBM}$

$$
\frac{d u}{d t}=\left\{\begin{array}{ccc}
\frac{d^{2} u}{d x^{2}}+u & \text { if } & u<1 \\
0 & \text { if } & u=1
\end{array}\right.
$$

One family of traveling wave solutions indexed by the velocity v

$$
\begin{gathered}
u=W_{v}(x-v t) \quad \text { for } \quad v \geq 2 \\
W_{v}(x)=\frac{\gamma_{2} e^{-\gamma_{1} x}-\gamma_{1} e^{-\gamma_{2} x}}{\gamma_{2}-\gamma_{1}}
\end{gathered}
$$

where γ_{1} and γ_{2} are the two roots of $\gamma^{2}+v \gamma+1=0$
Bramson's shift
For an initial condition decaying fast enough $\left(\int u(x, 0) x e^{x} d x<\infty\right)$

$$
u\left(x+X_{t}, t\right) \rightarrow W_{2}(x) \quad \text { as } \quad t \rightarrow \infty
$$

with

$$
X_{t}=2 t-\frac{3}{2} \log t+A(\{u(x, 0)\})+O\left(t^{-1 / 2}\right)
$$

The Fleming-Viot process

- N particles on a 1-d lattice (on the positive side)
- The particles perform independent random walks biaised towards the origin
- When a particle hits the origin, it jumps to the position of one of the $N-1$ remaining particles

Positions of the particles versus time

The Fleming-Viot process

Positions of the particles versus time

The Fleming-Viot process

$n_{i}=$ the number of particles at the right of site i

$$
\alpha<\beta \quad ; \quad n_{0}=0
$$

$$
\frac{d\left\langle n_{i}\right\rangle}{d t}=\left\langle\alpha n_{i-1}-(\alpha+\beta) n_{i}+\beta n_{i+1}\right\rangle+\frac{\beta}{N}\left\langle n_{1} n_{i}\right\rangle
$$

The Fleming-Viot process

$n_{i}=$ the number of particles at the right of site i

$$
\begin{gathered}
\alpha<\beta \quad ; \quad n_{0}=0 \\
\frac{d\left\langle n_{i}\right\rangle}{d t}=\left\langle\alpha n_{i-1}-(\alpha+\beta) n_{i}+\beta n_{i+1}\right\rangle+\frac{\beta}{N}\left\langle n_{1} n_{i}\right\rangle
\end{gathered}
$$

mean-field approximation : $\quad u_{i}=\frac{\left\langle n_{i}\right\rangle}{N} \quad ; \quad \sum_{i} u_{i}=1$

$$
\frac{d u_{i}}{d t}=\alpha u_{i-1}-(\alpha+\beta) u_{i}+\beta u_{i-1}+\alpha u_{i} u_{1}
$$

A one family of steady state solutions indexed by u_{1}.

The Fleming-Viot process

mean field equation
Q_{t} is the number of hits of the origin during time t
If the initial condition $u_{i}(0)$ decays fast enough, one steady state solution is selected

$$
Q_{t}=(\sqrt{\beta}-\sqrt{\alpha})^{2} t+\frac{3}{2} \log t+A\left(\left\{u_{k}(0)\right\}\right)+o(1)
$$

with

$$
e^{-A}=\frac{1}{\sqrt{\pi}(\beta \alpha)^{1 / 4}(\sqrt{\beta}-\sqrt{\alpha})^{2}} \sum_{k \geq 1} k\left(\frac{\beta}{\alpha}\right)^{k / 2} u_{k}(0)
$$

for the FV process, Q_{t} is explicit at all times

The Fleming-Viot process

mean field equation
Q_{t} is the number of hits of the origin during time t
If the initial condition $u_{i}(0)$ decays fast enough, one steady state solution is selected

$$
Q_{t}=(\sqrt{\beta}-\sqrt{\alpha})^{2} t+\frac{3}{2} \log t+A\left(\left\{u_{k}(0)\right\}\right)+o(1)
$$

with

$$
e^{-A}=\frac{1}{\sqrt{\pi}(\beta \alpha)^{1 / 4}(\sqrt{\beta}-\sqrt{\alpha})^{2}} \sum_{k \geq 1} k\left(\frac{\beta}{\alpha}\right)^{k / 2} u_{k}(0)
$$

for the FV process, Q_{t} is explicit at all times

Large N corrections

one flux selected
$\frac{Q_{t}}{t}-(\sqrt{\beta}-\sqrt{\alpha})^{2} \simeq \frac{A}{\log ^{2} N}$ numerics $\quad ; \quad \frac{\left\langle Q_{t}^{2}\right\rangle-\left\langle Q_{t}\right\rangle^{2}}{t} \simeq \frac{B}{\log ^{3} N}$

Reaction-diffusion traveling equations

- N particles on each site
- On site $x, n(x, t)$ red particles and $N-n(x, t)$ blue particles
- exchange of particles between neighboring sites
- reation : $n(x) \rightarrow n(x)+1$ with robability $f(n(x) / N)$

$$
u(x, t)=\frac{n(x, t)}{N}
$$

meanfield equation + continuous limit

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+f(u)
$$

For $f(u)=u(1-u)$: Fisher-KPP equation

Fisher-KPP fronts

$$
\begin{gathered}
f(0)=f(1)=0 ; f^{\prime}(0)=1 ; f(u)>0 \text { for } 0<u<1 ; \text { and } f(u)<u \\
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+f(u) \\
u=0 \text { unstable } \quad ; \quad u=1 \text { stable }
\end{gathered}
$$

One parameter family of travelling wave solutions
The solution is selected by the initial conditions
For initial conditions decaying fast enough

$$
X_{t}=2 t-\frac{3}{2} \log t+A(\{u(x, 0)\})+o(1)
$$

Pulled versus pushed fronts

Pulled versus pushed fronts

$$
\begin{gathered}
f(0)=f(1)=0 ; f^{\prime}(0)=1 \quad f(u)>0 \text { for } 0<u<1 ; \text { and } f(u)<u \\
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+f(u)
\end{gathered}
$$

For example $f(u)=\left(u-u^{2}\right)(1+2 a u)$

Pulled versus pushed fronts

$f(0)=f(1)=0 ; f^{\prime}(0)=1 \quad f(u)>0$ for $0<u<1 \quad ;$ and $f(u)<4$

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+f(u)
$$

For example $f(u)=\left(u-u^{2}\right)(1+2 a u)$
Hadeler, Rothe 1975

- pulled front $a<1$

$$
X_{t}=2 t-\frac{3}{2} \log t+O(1)
$$

- the transition point $a=1$

$$
X_{t}=2 t-\frac{1}{2} \log t+O(1)
$$

- pushed front $a>1$

$$
X_{t}=\left(a^{\frac{1}{2}}+a^{-\frac{1}{2}}\right) t+O(1)
$$

Pulled versus pushed fronts

$f(0)=f(1)=0 ; f^{\prime}(0)=1 \quad f(u)>0$ for $0<u<1 \quad ;$ and $\quad f(u)<u$

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+f(u)
$$

For example $f(u)=\left(u-u^{2}\right)(1+2 a u)$
Hadeler, Rothe 1975

- pulled front $a<1$

$$
X_{t}=2 t-\frac{3}{2} \log t+O(1)
$$

- the transition point $a=1$

$$
X_{t}=2 t-\frac{1}{2} \log t+O(1)
$$

- pushed front $a>1$

$$
X_{t}=\left(a^{\frac{1}{2}}+a^{-\frac{1}{2}}\right) t+O(1)
$$

Other examples $f(u)=(u-B(u))\left(1+a B^{\prime}(u)\right) \quad$ An, Henderson, Ryzhik, 2022 with $B(0)=B^{\prime}(0)=0$ and $B(1)=1$

The vanishing of an amplitude

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+f(u)
$$

A traveling wave solution $u(x, t)=W_{v}(x-v t)$
W is solution of

$$
W_{v}^{\prime \prime}+v W_{v}^{\prime}+f\left(W_{v}\right)=0
$$

The vanishing of an amplitude

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+f(u)
$$

A traveling wave solution $u(x, t)=W_{v}(x-v t)$
W is solution of

$$
W_{v}^{\prime \prime}+v W_{v}^{\prime}+f\left(W_{v}\right)=0
$$

For large x

$$
W_{v}(x) \sim A_{1}(v) e^{-\gamma_{1} x}+A_{2}(v) e^{-\gamma_{2} x} \quad \text { with } \quad \gamma_{1} \leq \gamma_{2}
$$

and γ_{1} and γ_{2} are solutions of

$$
\gamma^{2}-v \gamma+f^{\prime}(0)=0
$$

The vanishing of an amplitude

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+f(u)
$$

A traveling wave solution $u(x, t)=W_{v}(x-v t)$
W is solution of

$$
W_{v}^{\prime \prime}+v W_{v}^{\prime}+f\left(W_{v}\right)=0
$$

For large x

$$
W_{v}(x) \sim A_{1}(v) e^{-\gamma_{1} x}+A_{2}(v) e^{-\gamma_{2} x} \quad \text { with } \quad \gamma_{1} \leq \gamma_{2}
$$

and γ_{1} and γ_{2} are solutions of

$$
\gamma^{2}-v \gamma+f^{\prime}(0)=0
$$

If $A_{1}(v)$ vanishes at some $v^{*}>v_{\text {min }}$, the front is pushed and

$$
X_{t}=v^{*} t+O(1)
$$

An exactly solvable case : the modified N -BBM

$$
\begin{array}{ll}
u\left(X_{t}, t\right)=1 & \text { for } \quad x \leq X_{t} \\
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+u & \text { for } \quad x>X_{t} \\
\partial_{x} u\left(X_{t}, t\right)=-a & \text { for the N-BBM } a=0
\end{array}
$$

An exactly solvable case : the modified N-BBM

$$
\begin{array}{lll}
u\left(X_{t}, t\right)=1 & \text { for } & x \leq X_{t} \\
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+u & \text { for } & x>X_{t}
\end{array}
$$

$$
\partial_{x} u\left(X_{t}, t\right)=-a
$$

$$
\text { for the } \mathrm{N}-\mathrm{BBM} a=0
$$

The traveling wave

$$
W_{v}(x)=\frac{1-a \gamma_{1}}{1-\gamma_{1}^{2}} e^{-\gamma_{1} x}+\frac{1-a \gamma_{2}}{1-\gamma_{2}^{2}} e^{-\gamma_{2} x}
$$

where $\gamma_{1}<1<\gamma_{2}$ are the two roots of $\gamma^{2}-v \gamma+1=0$

An exactly solvable case : the modified N-BBM

$$
\begin{array}{lll}
u\left(X_{t}, t\right)=1 & \text { for } & x \leq X_{t} \\
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+u & \text { for } & x>X_{t}
\end{array}
$$

$$
\text { for the N-BBM } a=0
$$

The traveling wave

$$
W_{v}(x)=\frac{1-a \gamma_{1}}{1-\gamma_{1}^{2}} e^{-\gamma_{1} x}+\frac{1-a \gamma_{2}}{1-\gamma_{2}^{2}} e^{-\gamma_{2} x}
$$

where $\gamma_{1}<1<\gamma_{2}$ are the two roots of $\gamma^{2}-v \gamma+1=0$

$$
X_{t}=\left\{\begin{array}{ll}
2 t-\frac{3}{2} \log t+O(1) & \text { for } \\
2 t-\frac{1}{2} \log t+O(1) & \text { for } \\
X_{t}=\left(a+a^{-1}\right) t+O(1) & \text { for }
\end{array} \quad a>1 .\right.
$$

The transition between

 pulled and pushed fronts
Cross-over $a \rightarrow 1$ and $t \rightarrow \infty$ for the modified N -BBM

For $a=1+\epsilon$ and large t

Initial condition $u(x, 0)$ decaying fast enough

$$
X_{t}=2 t-\frac{1}{2} \log t+\Psi_{1}(\epsilon \sqrt{t})+A(\{u(x, 0)\})+o(1)
$$

where

$$
\Psi_{1}(z)=\log \left[1+2 z e^{z^{2}} \int_{-\infty}^{z} d v e^{-v^{2}}\right]
$$

and

Cross-over $a \rightarrow 1$ and $t \rightarrow \infty$ for the modified N -BBM

For $a=1+\epsilon$ and large t

Initial condition $u(x, 0)$ decaying fast enough

$$
X_{t}=2 t-\frac{1}{2} \log t+\Psi_{1}(\epsilon \sqrt{t})+A(\{u(x, 0)\})+o(1)
$$

where

$$
\Psi_{1}(z)=\log \left[1+2 z e^{z^{2}} \int_{-\infty}^{z} d v e^{-v^{2}}\right]
$$

and

$$
A(\{u(x, 0)\})=\log \left[1+\int_{0}^{\infty} d z e^{z} u(z, 0)\right]-\frac{1}{2} \log \pi
$$

Cross-over $a \rightarrow 1$ and $t \rightarrow \infty$ for the modified N -BBM

For $a=1+\epsilon$ and large t

Initial condition $u(x, 0)$ decaying fast enough

$$
X_{t}=2 t-\frac{1}{2} \log t+\Psi_{1}(\epsilon \sqrt{t})+A(\{u(x, 0)\})+o(1)
$$

where

$$
\Psi_{1}(z)=\log \left[1+2 z e^{z^{2}} \int_{-\infty}^{z} d v e^{-v^{2}}\right]
$$

and

$$
A(\{u(x, 0)\})=\log \left[1+\int_{0}^{\infty} d z e^{z} u(z, 0)\right]-\frac{1}{2} \log \pi
$$

Question: is this cross-over universal ?

$$
1=(1-a r) \int_{0}^{\infty} d t e^{r X_{t}-\left(1+r^{2}\right) t}
$$

Example: step initial condition $u_{0}(x)=0$, and $a=1+\epsilon$.

$$
1=\text { r.h.s. }
$$

At each order of $a-1$ look for the most singular term as $r \rightarrow 1$

1. $X_{t}=2 t$

$$
\text { r.h.s. }=\frac{1}{(1-r)}+\frac{\epsilon}{(1-r)^{2}}+\frac{\epsilon^{2}}{(1-r)^{3}}+\cdots
$$

$$
1=(1-a r) \int_{0}^{\infty} d t e^{r X_{t}-\left(1+r^{2}\right) t}
$$

Example: step initial condition $u_{0}(x)=0$, and $a=1+\epsilon$.

$$
1=\text { r.h.s. }
$$

At each order of $a-1$ look for the most singular term as $r \rightarrow 1$

1. $X_{t}=2 t$

$$
\text { r.h.s. }=\frac{1}{(1-r)}+\frac{\epsilon}{(1-r)^{2}}+\frac{\epsilon^{2}}{(1-r)^{3}}+\cdots
$$

2. $X_{t}=2 t-\frac{1}{2} \log t-\frac{1}{2} \log \pi$

$$
\text { r.h.s. }=1+\frac{\epsilon}{(1-r)}+O\left(\epsilon^{2}\right)
$$

$$
1=(1-a r) \int_{0}^{\infty} d t e^{r X_{t}-\left(1+r^{2}\right) t}
$$

Example: step initial condition $u_{0}(x)=0$, and $a=1+\epsilon$.

$$
1=\text { r.h.s. }
$$

At each order of $a-1$ look for the most singular term as $r \rightarrow 1$

1. $X_{t}=2 t$

$$
\text { r.h.s. }=\frac{1}{(1-r)}+\frac{\epsilon}{(1-r)^{2}}+\frac{\epsilon^{2}}{(1-r)^{3}}+\cdots
$$

2. $X_{t}=2 t-\frac{1}{2} \log t-\frac{1}{2} \log \pi$

$$
\text { r.h.s. }=1+\frac{\epsilon}{(1-r)}+O\left(\epsilon^{2}\right)
$$

3. $X_{t}=2 t-\frac{1}{2} \log t-\frac{1}{2} \log \pi+\sqrt{\pi} \epsilon \sqrt{t}+\cdots$

$$
\text { r.h.s. }=1+O\left(\epsilon^{2}\right)+\cdots
$$

The cross-over for the Fleming-Viot process

$n_{i}=$ the number of particles at the right of site i

$$
\alpha<\beta \quad ; \quad n_{0}=0
$$

$$
\frac{d\left\langle n_{i}\right\rangle}{d t}=\left\langle\alpha n_{i-1}-\left(\alpha+\beta_{i}\right) n_{i}+\beta_{i-1} n_{i+1}\right\rangle+\frac{\beta_{1}}{N}\left\langle n_{1} n_{i}\right\rangle
$$

$\beta_{i}=\beta$ for $i \geq 2$
$\beta_{1} \neq \beta$
Cross-over

$$
\beta_{1}=\beta-\sqrt{\alpha \beta}-(\alpha \beta)^{\frac{1}{4}} \epsilon
$$

$$
Q_{t}=(\sqrt{\beta}-\sqrt{\alpha})^{2}+\frac{1}{2} \log t-\Psi_{1}(\epsilon \sqrt{t})+A(\{u(x, 0)\})+o(1)
$$

The large N corrections

Reaction-diffusion problem

$$
n(x, t)+n(x, t)=N
$$

1. $N=\infty$: Fisher-KPP equation

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+u-u^{2}
$$

2. N large : Noisy Fisher-KPP equation

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+u-u^{2}+\sqrt{\frac{u(1-u)}{N}} \eta(x, t)
$$

with $\eta(x, t)$ white noise

Traveling wave equation + noise

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+u-u^{2}+\frac{1}{\sqrt{N}} \eta(x, t) \sqrt{u(1-u)}
$$

Brunet Derrida 1997

Brunet Derrida Mueller Munier 2006

Mueller Mytnik Quastel 2008

$$
v_{N} \simeq 2-\frac{\pi^{2}}{\log ^{2} N} \quad D_{N} \simeq \frac{2 \pi^{4}}{3 \log ^{3} N}
$$

Noisy Fisher KPP equation

$$
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+u-u^{2}+\sqrt{\epsilon u(1-u)} \eta(x, t)
$$

- Reaction diffusion model: $A \rightarrow 2 A$ and $2 A \rightarrow A$ at rate ϵ $u(x, t)$ is the density
- N - Branching Brownian motion (selection: $\epsilon=N^{-1}$)

Doering, Mueller, Smereka 2003
Brunet Derrida Mueller Munier 2006-2007

For the $\mathrm{N}-\mathrm{BBM}$

For a population of fixed size N

- Large N limit (first $t \rightarrow \infty$, then $N \rightarrow \infty$) becomes the free boundary problem

Durrett, Remenik 2011
De Masi, Ferrari, Presutti, Soprano-Loto 2019

$$
\begin{array}{ll}
u\left(X_{t}, t\right)=1 & \text { for } \\
\frac{d u}{d t}=\frac{d^{2} u}{d x^{2}}+u & \text { for } \\
x>X_{t}
\end{array}
$$

- Velocity as a function of N

$$
v_{N} \simeq 2-\frac{\pi^{2}}{\log ^{2} N}+\cdots
$$

Crossover between pulled and pushed fronts

- $a<1$ (pulled case)

$$
v_{N}=2-\frac{\pi^{2}}{\log ^{2} N}+\cdots
$$

Crossover between pulled and pushed fronts

- $a<1$ (pulled case)

$$
v_{N}=2-\frac{\pi^{2}}{\log ^{2} N}+\cdots
$$

- $a>1$ (pushed case)

Kessler Ner Sander 1998

$$
v_{N}=a+a^{-1}-\frac{\left(1-a^{2}\right)^{2}}{a^{3}} N^{a-a^{-1}}+\cdots
$$

Crossover between pulled and pushed fronts

- $a<1$ (pulled case)

Brunet Derrida 1997

$$
v_{N}=2-\frac{\pi^{2}}{\log ^{2} N}+\cdots
$$

- $a>1$ (pushed case)

$$
v_{N}=a+a^{-1}-\frac{\left(1-a^{2}\right)^{2}}{a^{3}} N^{a-a^{-1}}+\cdots
$$

- $a=1$ transition

$$
v_{N}=2-\frac{\pi^{2}}{4 \log ^{2} N}+\cdots
$$

Crossover between pulled and pushed fronts

- $a<1$ (pulled case)

$$
v_{N}=2-\frac{\pi^{2}}{\log ^{2} N}+\cdots
$$

- $a>1$ (pushed case)

$$
v_{N}=a+a^{-1}-\frac{\left(1-a^{2}\right)^{2}}{a^{3}} N^{a-a^{-1}}+\cdots
$$

- $a=1$ transition

$$
v_{N}=2-\frac{\pi^{2}}{4 \log ^{2} N}+\cdots
$$

- cross-over $a \rightarrow 1$ and $\epsilon \rightarrow 0$

$$
v_{N}=2-\frac{\chi^{2}}{\log ^{2} N}+\cdots
$$

where χ is solution of $\chi=(\epsilon \log N) \tan (\chi)$

Conclusion

- Universality of these cross-overs
- In particular

$$
v_{N}= \begin{cases}2-\frac{\pi^{2}}{\log ^{2} N} & \text { pulled front } \\ 2-\frac{\pi^{2}}{4 \log ^{2} N} & \text { transition }\end{cases}
$$

- Numerical, theoretical and mathematical works needed
- Genealogies of Fleming Viot process
- Tip if the BBM ? = ? tip of Fleming Viot process

