Mean-field limits for log/Coulomb/Riesz interacting diffusions

Sylvia SERFATY

Courant Institute, NYU

IRS2024 January 23, 2024

The discrete coupled ODE system

Consider

$$H_N(x_1,\ldots,x_N) = \frac{1}{2} \sum_{1 \le i \ne j \le N} \mathsf{g}(x_i - x_j), \qquad x_i \in \mathbb{R}^d$$

Model case:

$$\begin{cases} \mathsf{g}(x) = \frac{1}{s|x|^s} & d-2 \le s < d & \mathsf{Riesz\ case} \\ \mathsf{g}(x) = -\log|x| & s = 0 & \mathsf{log\ case} \end{cases}$$

The discrete coupled ODE system

Consider

$$H_N(x_1,\ldots,x_N) = \frac{1}{2} \sum_{1 \le i \ne j \le N} \mathsf{g}(x_i - x_j), \qquad x_i \in \mathbb{R}^d$$

Model case:

$$\begin{cases} \mathsf{g}(x) = \frac{1}{s|x|^s} & d-2 \le s < d & \mathsf{Riesz\ case} \\ \mathsf{g}(x) = -\log|x| & s = 0 & \mathsf{log\ case} \end{cases}$$

Evolution equation

$$\begin{split} \dot{x_i} &= -\frac{1}{N} \left(\nabla_i H_N(x_1, \dots, x_N) \right) + \frac{1}{\sqrt{\beta}} dW_i^t & \text{gradient flow} \\ \dot{x_i} &= -\frac{1}{N} \mathbb{J} \nabla_i H_N(x_1, \dots, x_N) + \frac{1}{\sqrt{\beta}} dW_i^t & \text{conservative flow} & (\mathbb{J}^T = -\mathbb{J}) \\ \ddot{x_i} &= -\frac{1}{N} \nabla_i H_N(x_1, \dots, x_N) + \frac{1}{\sqrt{\beta}} dW_i^t & \text{Newton's law} \end{split}$$

possibly with added noise $1/\sqrt{\beta}dW_i^t$, N independent Brownian motions, $\beta=$ inverse temperature

Questions

For a general system

$$\dot{x_i} = \frac{1}{N} \sum_{j \neq i} K(x_i - x_j) + \frac{1}{\sqrt{\beta}} dW_i^t$$

▶ What is the limit of the **empirical measure**? Is there μ^t such that for each t

$$\frac{1}{N} \sum_{i=1}^{N} \delta_{x_i^t} \rightharpoonup \mu^t \tag{1}$$

Questions

For a general system

$$\dot{x_i} = \frac{1}{N} \sum_{j \neq i} K(x_i - x_j) + \frac{1}{\sqrt{\beta}} dW_i^t$$

▶ What is the limit of the **empirical measure**? Is there μ^t such that for each t

$$\frac{1}{N} \sum_{i=1}^{N} \delta_{x_i^t} \rightharpoonup \mu^t \tag{1}$$

▶ if $f_N^0(x_1,...,x_N)$ is the probability density of position of the system at time 0, what is the limit behavior of f_N^t ?

Questions

For a general system

$$\dot{x_i} = \frac{1}{N} \sum_{j \neq i} K(x_i - x_j) + \frac{1}{\sqrt{\beta}} dW_i^t$$

▶ What is the limit of the **empirical measure**? Is there μ^t such that for each t

$$\frac{1}{N} \sum_{i=1}^{N} \delta_{x_i^t} \rightharpoonup \mu^t \tag{1}$$

- ▶ if $f_N^0(x_1,...,x_N)$ is the probability density of position of the system at time 0, what is the limit behavior of f_N^t ?
- ▶ propagation of chaos (Boltzmann, Kac, Dobrushin): if $f_N^0(x_1, \ldots, x_N) \simeq \mu^0(x_1) \ldots \mu^0(x_N)$ is it true that

$$f_N^t(x_1,\ldots,x_N)\simeq \mu^t(x_1)\ldots\mu^t(x_N)$$
?

in the sense of convergence of the k-point marginal $f_{N,k}$.

Formal limit

Use

$$\partial_t \delta_{x(t)} + \operatorname{div} \left(\dot{x} \delta_{x(t)} \right) = 0$$

or Liouville equation + BBGKY hierarchy

$$\partial_t f_N + \sum_{i=1}^N \nabla_{x_i} \left(f_N \frac{1}{N} \sum_{i=1}^N K(x_i - x_j) \right) = 0$$

We formally expect $\mu_N^t := \frac{1}{N} \sum_{i=1}^N \delta_{x_i^t} \rightharpoonup \mu^t$ where μ^t solves the mean-field equation

$$\partial_t \mu = \operatorname{div} ((K * \mu)\mu) + \frac{1}{2\beta} \Delta \mu \quad (MF)$$

or in the second order case the Vlasov / McKean-Vlasov equation

$$\partial_t \rho + \mathbf{v} \cdot \nabla_{\mathbf{x}} \rho + (K * \mu) \cdot \nabla_{\mathbf{v}} \rho + \frac{1}{2\beta} \Delta \rho = 0$$
 $\mu = \int_{\mathbb{R}^d} \rho(\mathbf{x}, \mathbf{v}) d\mathbf{v}$

► Trajectorial method ([Sznitman]...): compare true trajectories to those following characteristics for the limit equation. OK for K Lipschitz.

- ► **Trajectorial** method ([Sznitman]...): compare true trajectories to those following characteristics for the limit equation. OK for *K* Lipschitz.
- ightharpoonup Find a good metric, typically Wasserstein W_1 such that

$$\partial_t W_1(\mu_1(t), \mu_2(t)) \leq CW_1(\mu_1(t), \mu_2(t))$$

for two solutions of the mean-field evolution. Apply to μ_N^t and μ^t . [Braun-Hepp, Dobrushin, Neunzert-Wick...]

- ► **Trajectorial** method ([Sznitman]...): compare true trajectories to those following characteristics for the limit equation. OK for *K* Lipschitz.
- ightharpoonup Find a good metric, typically Wasserstein W_1 such that

$$\partial_t W_1(\mu_1(t), \mu_2(t)) \leq CW_1(\mu_1(t), \mu_2(t))$$

for two solutions of the mean-field evolution. Apply to μ_N^t and μ^t . [Braun-Hepp, Dobrushin, Neunzert-Wick...]

▶ Use a **relative entropy method**: show a Gronwall relation for

$$0 \leq \mathcal{H}_N(f_N|\rho^{\otimes N}) := \frac{1}{N} \int f_N \log \frac{f_N}{\rho^{\otimes N}} dx_1 \dots dx_N.$$

[Jabin-Wang '16] for $\beta < \infty$, K not too irregular.

- ► **Trajectorial** method ([Sznitman]...): compare true trajectories to those following characteristics for the limit equation. OK for *K* Lipschitz.
- ightharpoonup Find a good metric, typically Wasserstein W_1 such that

$$\partial_t W_1(\mu_1(t), \mu_2(t)) \leq CW_1(\mu_1(t), \mu_2(t))$$

for two solutions of the mean-field evolution. Apply to μ_N^t and μ^t . [Braun-Hepp, Dobrushin, Neunzert-Wick...]

▶ Use a **relative entropy method**: show a Gronwall relation for

$$0 \leq \mathcal{H}_N(f_N|\rho^{\otimes N}) := \frac{1}{N} \int f_N \log \frac{f_N}{\rho^{\otimes N}} dx_1 \dots dx_N.$$

[Jabin-Wang '16] for $\beta < \infty$, K not too irregular.

▶ In the Coulomb case, results in 2d for first order evolutions [Goodman-Hou-Lowengrub '90, Schochet '96,Osada '87, Fournier-Hauray-Mischler '14, Duerinckx '15] but for $d \ge 3$ open.

- ► Trajectorial method ([Sznitman]...): compare true trajectories to those following characteristics for the limit equation. OK for *K* Lipschitz.
- ightharpoonup Find a good metric, typically Wasserstein W_1 such that

$$\partial_t W_1(\mu_1(t), \mu_2(t)) \leq CW_1(\mu_1(t), \mu_2(t))$$

for two solutions of the mean-field evolution. Apply to μ_N^t and μ^t . [Braun-Hepp, Dobrushin, Neunzert-Wick...]

▶ Use a **relative entropy method**: show a Gronwall relation for

$$0 \leq \mathcal{H}_N(f_N|\rho^{\otimes N}) := \frac{1}{N} \int f_N \log \frac{f_N}{\rho^{\otimes N}} dx_1 \dots dx_N.$$

[Jabin-Wang '16] for $\beta < \infty$, K not too irregular.

- In the Coulomb case, results in 2d for first order evolutions [Goodman-Hou-Lowengrub '90, Schochet '96,Osada '87, Fournier-Hauray-Mischler '14, Duerinckx '15] but for d ≥ 3 open.
- ► for convergence to Vlasov-Poisson/Riesz
 - ▶ [Hauray-Jabin '15, Jabin-Wang '17] s < d 2, Coulomb interaction (or more singular) remains open.
 - ► [Boers-Pickl '16, Lazarovici '16, Lazarovici-Pickl '17] Coulomb with N-dependent cut-off

The modulated energy method

Idea: use Riesz-based metric:

$$\|\mu-\nu\|^2 = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \mathsf{g}(x-y) d(\mu-\nu)(x) d(\mu-\nu)(y).$$

Observe weak-strong uniqueness property of the solutions to (MF) for $\|\cdot\|$:

$$\|\mu_1^t - \mu_2^t\|^2 \le e^{Ct} \|\mu_1^0 - \mu_2^0\|^2$$
 $C = C(\|\nabla^2(g * \mu_2)\|_{L^{\infty}})$

In the discrete case, let X_N denote (x_1, \ldots, x_N) and take for modulated energy,

$$F_N(X_N,\mu) = \iint_{\mathbb{R}^d \times \mathbb{R}^d \setminus \triangle} g(x-y) d\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i} - \mu\right)(x) d\left(\frac{1}{N} \sum_{i=1}^N \delta_{x_i} - \mu\right)(y)$$

where \triangle denotes the diagonal in $\mathbb{R}^d \times \mathbb{R}^d$, and μ^t solves (MF).

Theorem (S '18 ($d-2 \le s < d$), H.Q.Nguyen-Rosenzweig-S '21 s < d)

Case $\beta = \infty$. Assume (MF) admits a solution $\mu^t \in L^{\infty}([0,T],L^{\infty}(\mathbb{R}^d))$ with

 $\begin{cases} \nabla^2 \mathbf{g} * \mu^t \in L^\infty([0,T],L^\infty(\mathbb{R}^d)) \text{ in the Coulomb case} \\ \text{additional regularity conditions on } \mu^t \text{ in the other cases} \end{cases}$

Theorem (S '18 ($d-2 \le s < d$), H.Q.Nguyen-Rosenzweig-S '21 s < d)

Case $\beta = \infty$. Assume (MF) admits a solution $\mu^t \in L^{\infty}([0, T], L^{\infty}(\mathbb{R}^d))$ with

 $\begin{cases} \nabla^2 \mathbf{g} * \mu^t \in L^\infty([0,T],L^\infty(\mathbb{R}^d)) \text{ in the Coulomb case} \\ \text{additional regularity conditions on } \mu^t \text{ in the other cases} \end{cases}$

There exist constants C_1 , C_2 depending on the norms of μ^t and $\gamma > 0$ depending on d, s, σ , s.t. $\forall t \in [0, T]$

$$|F_N(X_N^t, \mu^t)| \le (|F_N(X_N^0, \mu^0)| + C_1 N^{-\gamma}) e^{C_2 t}.$$

Theorem (S '18 ($d-2 \le s < d$), H.Q.Nguyen-Rosenzweig-S '21 s < d)

Case $\beta = \infty$. Assume (MF) admits a solution $\mu^t \in L^{\infty}([0, T], L^{\infty}(\mathbb{R}^d))$ with

$$\begin{cases} \nabla^2 \mathbf{g} * \mu^t \in L^\infty([0,T],L^\infty(\mathbb{R}^d)) \text{ in the Coulomb case} \\ \text{additional regularity conditions on } \mu^t \text{ in the other cases} \end{cases}$$

There exist constants C_1 , C_2 depending on the norms of μ^t and $\gamma > 0$ depending on d, s, σ , s.t. $\forall t \in [0, T]$

$$|F_N(X_N^t, \mu^t)| \le (|F_N(X_N^0, \mu^0)| + C_1 N^{-\gamma}) e^{C_2 t}.$$

In particular, if $\mu_N^0 \rightharpoonup \mu^0$ and is such that $\lim_{N \to \infty} F_N(X_N^0, \mu^0) = 0$, then the same is true for every $t \in [0, T]$ and $\mu_N^t \rightharpoonup \mu^t$

Theorem (S '18 (
$$d-2 \le s < d$$
), H.Q.Nguyen-Rosenzweig-S '21 $s < d$)

Case $\beta = \infty$. Assume (MF) admits a solution $\mu^t \in L^{\infty}([0, T], L^{\infty}(\mathbb{R}^d))$ with

$$\begin{cases} \nabla^2 \mathbf{g} * \mu^t \in L^\infty([0,T],L^\infty(\mathbb{R}^d)) \text{ in the Coulomb case} \\ \text{additional regularity conditions on } \mu^t \text{ in the other cases} \end{cases}$$

There exist constants C_1 , C_2 depending on the norms of μ^t and $\gamma > 0$ depending on d, s, σ , s.t. $\forall t \in [0, T]$

$$|F_N(X_N^t, \mu^t)| \le (|F_N(X_N^0, \mu^0)| + C_1 N^{-\gamma}) e^{C_2 t}.$$

In particular, if $\mu_N^0 \rightharpoonup \mu^0$ and is such that $\lim_{N \to \infty} F_N(X_N^0, \mu^0) = 0$, then the same is true for every $t \in [0, T]$ and $\mu_N^t \rightharpoonup \mu^t$

- ▶ [Rosenzweig '20] improved the result in the Coulomb case: $\mu^0 \in L^\infty$ suffices (for short times if $d \ge 3$).
- ► Now sharp rate $N^{-\gamma} = N^{\frac{s}{d}-1}$ [Rosenzweig-S '23]

Convergence to Vlasov-Poisson in the monokinetic case

Let $Z_N = ((x_1, v_1), \dots, (x_N, v_N))$ where $v_i = \dot{x_i}$. Monokinetic version of (VP) (pressureless Euler-Poisson):

$$\rho^t(x, v) = \mu^t(x) \delta_{v = u^t(x)}$$

$$\partial_t \mu + \operatorname{div}(\mu u) = 0$$
 $\partial_t u + u \cdot \nabla u = -\nabla g * \mu$ (PEP)

Convergence to Vlasov-Poisson in the monokinetic case

Let $Z_N = ((x_1, v_1), \dots, (x_N, v_N))$ where $v_i = \dot{x_i}$. Monokinetic version of (VP) (pressureless Euler-Poisson):

$$\rho^t(x, v) = \mu^t(x) \delta_{v = u^t(x)}$$

$$\partial_t \mu + \operatorname{div}(\mu u) = 0$$
 $\partial_t u + u \cdot \nabla u = -\nabla g * \mu$ (PEP)

Use modulated energy

$$E_N(Z_N,(\mu,u)) := \frac{1}{N} \sum_{i=1}^N |u(x_i) - v_i|^2 + F_N(X_N,\mu)$$

Convergence to Vlasov-Poisson in the monokinetic case

Let $Z_N = ((x_1, v_1), \dots, (x_N, v_N))$ where $v_i = \dot{x_i}$.

Monokinetic version of (VP) (pressureless Euler-Poisson):

$$\rho^t(x, v) = \mu^t(x) \delta_{v = u^t(x)}$$

$$\partial_t \mu + \operatorname{div}(\mu u) = 0 \qquad \partial_t u + u \cdot \nabla u = -\nabla g * \mu \qquad (PEP)$$

Use modulated energy

$$E_N(Z_N,(\mu,u)) := \frac{1}{N} \sum_{i=1}^N |u(x_i) - v_i|^2 + F_N(X_N,\mu)$$

Theorem (Duerinckx-S '18)

Assume Z_N^t solves Newton's law with initial data Z_N^0 . Assume (μ, u) is a sufficiently regular solution to (PEP) on [0, T]. Then

$$E_N(Z_N^t, (\mu^t, u^t)) \le (E_N(Z_N^0, (\mu^0, u^0)) + N^{-\beta}) e^{C_2 t}$$

In particular if $\lim_{N\to\infty} E_N(Z_N^0,(\mu^0,u^0))=0$ then $\mu_N^t:=\frac{1}{N}\sum_{i=1}^N \delta_{x_i^t} \rightharpoonup \mu^t$ for all $t\in[0,T]$.

□ P 4 □ P 4 = P 4 = P € 9 4 (~

When computing $\frac{d}{dt}F_N(X_N^t,\mu^t)$ we find we need to control

$$\iint_{\mathbb{R}^d \times \mathbb{R}^d \setminus \triangle} (\psi(x) - \psi(y)) \cdot \nabla \mathsf{g}(x - y) d(\frac{1}{N} \sum_{i=1}^N \delta_{x_i} - \mu)^{\otimes 2}(x, y)$$

with
$$\psi = \nabla \mathbf{g} * \mu^t$$
 or $\mathbb{J} \nabla \mathbf{g} * \mu^t$.

Proposition (S, NRS)

All Riesz-like cases s < d.

$$\iint_{\mathbb{R}^{d}\times\mathbb{R}^{d}\setminus\triangle} (\psi(x) - \psi(y)) \cdot \nabla g(x - y) d(\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}} - \mu)^{\otimes 2}(x, y) \\
\leq C \|D\psi\|_{L^{\infty}} (F_{N}(X_{N}, \mu) + N^{-\gamma}),$$

Proposition (S, NRS)

All Riesz-like cases s < d.

$$\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d} \setminus \triangle} (\psi(x) - \psi(y)) \cdot \nabla g(x - y) d(\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}} - \mu)^{\otimes 2}(x, y) \\
\leq C \|D\psi\|_{L^{\infty}} (F_{N}(X_{N}, \mu) + N^{-\gamma}),$$

Why commutator ? Let $f = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i} - \mu$

$$\int \psi \cdot \nabla(g * f) - g * (\nabla \cdot (\psi f)) = \langle f, \left[\psi, \frac{\nabla}{(-\Delta)^{\frac{d-s}{2}}} \right] f \rangle_{L^{2}}$$

Topic of singular integrals / Christ-Journé operators, [Hadzic, Seeger, Smart, Street] (all ${\rm div}\ \psi=0$).

Proposition (S, NRS)

All Riesz-like cases s < d.

$$\iint_{\mathbb{R}^{d}\times\mathbb{R}^{d}\setminus\triangle} (\psi(x) - \psi(y)) \cdot \nabla g(x - y) d(\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}} - \mu)^{\otimes 2}(x, y) \\
\leq C \|D\psi\|_{L^{\infty}} (F_{N}(X_{N}, \mu) + N^{-\gamma}),$$

Why commutator ? Let $f = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i} - \mu$

$$\int \psi \cdot \nabla(g * f) - g * (\nabla \cdot (\psi f)) = \langle f, \left[\psi, \frac{\nabla}{(-\Delta)^{\frac{d-s}{2}}} \right] f \rangle_{L^2}$$

Topic of singular integrals / Christ-Journé operators, [Hadzic, Seeger, Smart, Street] (all ${\rm div}\ \psi=0$).

Estimate used to treat the *quantum* Coulomb mean-field limit [Golse-Paul, Rosenzweig], *quasi-neutral* limits [Iacobelli-Han Kwan, Rosenzweig, RS, Ben Porat]

With noise: the modulated free energy

▶ If $\beta < \infty$, [Bresch-Jabin-Wang '19] incorporate the modulated energy into their relative entropy method: use a **modulated free** energy

$$\mathcal{F}_{N}^{\beta}(f_{N},\mu) = \frac{1}{\beta}\mathcal{H}_{N}(f_{N}|\mu^{\otimes N}) + \int f_{N}(X_{N})F_{N}(X_{N},\mu)dx_{1}\dots dx_{N}$$

where f_N = probability density on configurations.

Dissipative case only

- commutator estimate then suffices to complete the proof
- ▶ allows to treat Riesz cases *s* < *d* and attractive logarithmic interactions → convergence to Patlak-Keller-Segel

Evolution of modulated free energy

Introduce modulated Gibbs measure

$$\mathbb{Q}_{N,\beta}(\mu) = \frac{1}{K_{N,\beta}(\mu)} e^{-\beta N F_N(X_N,\mu)} d\mu(x_1) \dots d\mu(x_N)$$

Then [Rosenzweig-S '23]

$$\mathcal{F}_{N}^{\beta}(f_{N},\mu) = \frac{1}{\beta}\mathcal{H}_{N}(f_{N}|\mathbb{Q}_{N,\beta}(\mu)) + \underbrace{\frac{1}{N}\log K_{N,\beta}(\mu)}_{\text{o(1) constant}}$$

Evolution of modulated free energy

Introduce modulated Gibbs measure

$$\mathbb{Q}_{N,\beta}(\mu) = \frac{1}{K_{N,\beta}(\mu)} e^{-\beta N F_N(X_N,\mu)} d\mu(x_1) \dots d\mu(x_N)$$

Then [Rosenzweig-S '23]

$$\mathcal{F}_{N}^{\beta}(f_{N},\mu) = \frac{1}{\beta}\mathcal{H}_{N}(f_{N}|\mathbb{Q}_{N,\beta}(\mu)) + \underbrace{\frac{1}{N}\log K_{N,\beta}(\mu)}_{\text{o(1) constant}}$$

$$\frac{d}{dt}\mathcal{F}_{N}^{\beta}(f_{N}^{t},\mu^{t}) = -\frac{1}{\beta^{2}N}\underbrace{\int \left|\nabla\sqrt{\frac{f_{N}^{t}}{\mathbb{Q}_{N,\beta}(\mu^{t})}}\right|^{2}d\mathbb{Q}_{N,\beta}(\mu^{t})}_{N,\beta}$$

relative Fisher information

$$-\frac{1}{2}\int df_N^t \iint_{\triangle^c} (v^t(x)-v^t(y)) \cdot \nabla g(x-y) d\left(\frac{1}{N}\sum_{i=1}^N \delta_{x_i}-\mu^t\right)^{\otimes 2} (x,y) dx dy$$

commutator term

where $v^t = \nabla g * \mu^t + \frac{1}{\beta} \nabla \log \mu^t$

Global in time convergence?

Use Fisher information term and assume uniform "modulated" Log-Sobolev inequality

$$N\underbrace{\mathcal{H}_{N}(f_{N}^{t}|\mathbb{Q}_{N,\beta}(\mu^{t}))}_{\text{relative entropy}} \leq C_{LS}\underbrace{\int \left|\nabla\sqrt{\frac{f_{N}^{t}}{\mathbb{Q}_{N,\beta}(\mu^{t})}}\right|^{2}d\mathbb{Q}_{N,\beta}(\mu^{t})}_{\text{relative Fisher}}$$

then this + commutator estimate gives

$$\frac{d}{dt}\mathcal{F}_{N}^{\beta} \leq -C\mathcal{F}_{N}^{\beta} + o(1)$$

so exponential convergence to tensorized state (**generation of chaos**) [Rosenzweig-S '23]

Global-in-time convergence?

- ▶ [Guillin, Le Bris, Monmarché '21]: Jabin-Wang's relative entropy approach combined with logarithmic Sobolev inequality to control the entropy dissipation (= Fisher information) by the relative entropy itself.
- ▶ [RS '21] take advantage of decay of solution / velocity field to obtain uniform in time convergence in the sub-Coulomb case.
- ► [Hess-Childs '23] obtains LDP around the mean-field limit in the same sub-Coulomb case
- ▶ prove and exploit the **decay** rate of ∇v^t as $t \to \infty$ to insert into optimized commutator estimate. Works in torus super-Coulomb setting with exponential decay rate [Chodron de Courcel-Rosenzweig-S '23]

Global in time result: subcoulomb case via modulated energy

Step 1. Prove that μ^t decays fast enough in long time thanks to the dissipation.

Proposition (RS)

Let $1 \le p \le q \le \infty$.

$$\|\mu^{\mathbf{t}}\|_{L^{q}} \leq C_{p,q} \left(\frac{2\pi \mathbf{t}}{\beta(1/p-1/q)}\right)^{-\frac{d}{2}(\frac{1}{p}-\frac{1}{q})} \|\mu^{0}\|_{L^{p}}$$

Inspired by [Carlen-Loss] (case of divergence-free vector field).

Step 2. Optimized version of the functional inequality: use that $\psi^t = \mathbb{M} \nabla \mathbf{g} * \mu^t$

$$\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d} \setminus \triangle} (\psi^{t}(x) - \psi^{t}(y)) \cdot \nabla g(x - y) d(\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}} - \mu^{t})^{\otimes 2}(x, y) \\
\leq C \|\mu^{t}\|_{L^{\infty}}^{\frac{s+d}{2}} (F_{N}(X_{N}^{t}, \mu^{t}) + N^{-1 + \frac{s}{d}}),$$

Theorem (Rosenzweig-S '21)

Assume $d \geq 3$, 0 < s < d-2, first order evolution with additive noise, dissipative or conservative. Assume μ^t is a global in time bounded solution to the limiting equation

$$\partial_t \mu = -\text{div} \left(\mu \mathbb{M} \nabla g * \mu \right) + \frac{1}{2\beta} \Delta \mu.$$

Then

$$\mathbb{E}\left(|F_N(X_N^t,\mu^t)|\right) \leq C|F_N(X_N^0,\mu^0)| + N^{-\gamma}.$$

In the logarithmic case, we get instead a t^{σ} control.

Supercoulomb case via modulated free energy method

In the case of the torus: prove **exponential decay** of the (derivatives of the) limiting solution

Theorem (Chodron de Courcel - Rosenzweig - S '23)

Riesz case $s \in [d-2,d)$, gradient flow with additive noise. We have global in time convergence:

$$\mathcal{F}_{N}^{\beta}(f_{N}^{t},\mu^{t}) \leq C\left(\mathcal{F}_{N}^{\beta}(f_{N}^{0},\mu^{0}) + N^{\frac{s}{d}-1}\right).$$

The attractive log case

$$(-\Delta)^{d/2}$$
g $=\delta_0-1$ on \mathbb{T}^d $g(x)\simeq \log |x|$

The attractive log case

$$(-\Delta)^{d/2}$$
g $=\delta_0-1$ on \mathbb{T}^d $g(x)\simeq \log |x|$

On the torus $\mu_{unif}=1$ is always a stationary solution of (MF). We show it becomes **unstable** for $\beta>\beta_s$.

The attractive log case

$$(-\Delta)^{d/2}$$
g = $\delta_0 - 1$ on \mathbb{T}^d

$$g(x) \simeq \log |x|$$

On the torus $\mu_{unif}=1$ is always a stationary solution of (MF). We show it becomes **unstable** for $\beta>\beta_s$.

The modulated energy is no longer coercive. We show that it can be absorbed into the relative entropy if $\beta < \beta_i$:

$$\int F_N(X_N,\mu)df_N(X_N) \leq \frac{1}{\beta}H_N(f_N|\mu^{\otimes N}) + o(1)$$

modulated Log Hardy-Littlewood-Sobolev inequality

Theorem (CdC - R -S)

If $\beta < \beta_i$, there exists $\delta_\beta > 0$ s.t. if μ solution to (MF) with $\|\log \mu^0\|_{L^\infty} \le \delta_\beta$ and f_N^t an entropy solution to the fwd Kolmogorov eq, then

$$H_N(f_N^t|(\mu^t)^{\otimes N}) \leq C_{\beta,\|\log \mu^0\|_{W^2,\infty}} \mathcal{F}_N^{\beta}(f_N^0,\mu^0) + CN^{-\gamma}$$

→ uniform in time convergence

Theorem (CdC - R -S)

If $\beta < \beta_i$, there exists $\delta_\beta > 0$ s.t. if μ solution to (MF) with $\|\log \mu^0\|_{L^\infty} \le \delta_\beta$ and f_N^t an entropy solution to the fwd Kolmogorov eq, then

$$H_N(f_N^t|(\mu^t)^{\otimes N}) \leq C_{\beta,\|\log \mu^0\|_{W^2,\infty}} \mathcal{F}_N^{\beta}(f_N^0,\mu^0) + CN^{-\gamma}$$

→ uniform in time convergence

If $\beta > \beta_s$, for all $\varepsilon > 0$ there exists μ_{ε} sol to (MF) s.t.

$$\|\mu_{\varepsilon}^{0} - \mu_{unif}\|_{W^{1,\infty}} = O(\varepsilon)$$

and for some $t_{\varepsilon} \leq C |\log \varepsilon|$

$$\|f_{N,1}^{t_{arepsilon}} - \mu_{\mathit{unif}}\|_{L^{\mathbf{1}}} + \|f_{N,1}^{t_{arepsilon}} - \mu_{arepsilon}^{t_{arepsilon}}\|_{L^{\mathbf{1}}} \geq rac{1}{2}$$

where
$$f_N^0 = (\mu_{\varepsilon}^0)^{\otimes N}$$

Coro: We cannot have $H_N(f_N^t|(\mu^t)^{\otimes N}) \leq CH_N(f_N^0|\mu_0^{\otimes N}) + o(1)$ (apply ineq to both $\mu = \mu_{unif}$ and μ_{ε}^0) no uniform in time convergence

Proof of the commutator estimate: the electric rewriting of the energy

Set $h^f = g * f$. In the Coulomb case

$$-\Delta h^f = c_d f$$

We have by IBP

$$\iint_{\mathbb{R}^d \times \mathbb{R}^d} g(x-y) df(x) df(y) = \int_{\mathbb{R}^d} h^f df = -\frac{1}{c_d} \int_{\mathbb{R}^d} h^f \Delta h^f = \frac{1}{c_d} \int_{\mathbb{R}^d} |\nabla h^f|^2.$$

Proof of the commutator estimate: the electric rewriting of the energy

Set $h^f = g * f$. In the Coulomb case

$$-\Delta h^f = c_d f$$

We have by IBP

$$\iint_{\mathbb{R}^d \times \mathbb{R}^d} g(x-y) df(x) df(y) = \int_{\mathbb{R}^d} h^f df = -\frac{1}{c_d} \int_{\mathbb{R}^d} h^f \Delta h^f = \frac{1}{c_d} \int_{\mathbb{R}^d} |\nabla h^f|^2.$$

Positivity of F_N not clear! Use suitable **truncations** obtained by replacing δ_{x_i} by $\delta_{x_i}^{(r_i)}$ with r_i = nearest neighbor distance. Use almost-**monotonicity** with respect to truncation parameter.

Proof in the Coulomb case

Stress-energy tensor

$$[\nabla h^f]_{ij} = 2\partial_i h^f \partial_j h^f - |\nabla h^f|^2 \delta_{ij}.$$

For regular f,

$$\operatorname{div} \left[\nabla h^f \right] = 2 \Delta h^f \nabla h^f = -\frac{2}{c_d} f \nabla h^f.$$

Proof in the Coulomb case

Stress-energy tensor

$$[\nabla h^f]_{ij} = 2\partial_i h^f \partial_j h^f - |\nabla h^f|^2 \delta_{ij}.$$

For regular f,

$$\operatorname{div} \left[\nabla h^f \right] = 2 \Delta h^f \nabla h^f = -\frac{2}{c_d} f \nabla h^f.$$

$$\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} (\psi(x) - \psi(y)) \cdot \nabla g(x - y) df(x) df(y)$$

$$= 2 \int_{\mathbb{R}^{d}} \psi(x) \cdot \nabla h^{f}(x) df(x) = -c_{d} \int_{\mathbb{R}^{d}} \psi \cdot \operatorname{div} \left[\nabla h^{f} \right]$$

$$= c_{d} \int_{\mathbb{R}^{d}} D\psi \cdot \left[\nabla h^{f} \right] \le c_{d} \|D\psi\|_{L^{\infty}} \iint g(x - y) df(x) df(y)$$

Then needs to be **renormalized** by truncation procedure.

Proof in the Coulomb case

Stress-energy tensor

$$[\nabla h^f]_{ij} = 2\partial_i h^f \partial_j h^f - |\nabla h^f|^2 \delta_{ij}.$$

For regular f,

$$\operatorname{div} \left[\nabla h^f \right] = 2 \Delta h^f \nabla h^f = -\frac{2}{c_d} f \nabla h^f.$$

$$\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} (\psi(x) - \psi(y)) \cdot \nabla g(x - y) df(x) df(y)$$

$$= 2 \int_{\mathbb{R}^{d}} \psi(x) \cdot \nabla h^{f}(x) df(x) = -c_{d} \int_{\mathbb{R}^{d}} \psi \cdot \operatorname{div} \left[\nabla h^{f} \right]$$

$$= c_{d} \int_{\mathbb{R}^{d}} D\psi \cdot \left[\nabla h^{f} \right] \le c_{d} \|D\psi\|_{L^{\infty}} \iint g(x - y) df(x) df(y)$$

Then needs to be **renormalized** by truncation procedure. [Nguyen-Rosenzweig-S]: dispense with stress-tensor structure and from

paraproduct commutator estimates. Purely space-based. (Uses Riesz transform estimates).

THANK YOU FOR YOUR ATTENTION!