Mean-field limits for log/Coulomb/Riesz
interacting diffusions

Sylvia SERFATY
Courant Institute, NYU

IRS2024
January 23, 2024



The discrete coupled ODE system
Consider

1
HN(Xlw--sXN):E Z g(xi — xj), x; € R?
1<i#j<N

Model case:

1
sl
g(x)=—log|x|] s=0 log case

g(x) d—2<s<d Riesz case
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Consider
1
HN(Xlw--sXN):E Z g(xi — xj), x; € R?
1<iZj<N
Model case:
1 -
g(x)= —— d—-2<s<d Riesz case
s|x|
g(x)=—log|x|] s=0 log case

Evolution equation

1 1
Xj = N (ViHn(xa, ..., xn)) +—=dW!  gradient flow

VB
1 1
Xi = —=JViHn(x1, .., xn) +—=dW! conservative flow (J7 = —J
TV ) @ =-1
1 1
Xi = ——ViHn(x1, ..., xn) +—=dW! Newton’s law
Vit VG

possibly with added noise 1/v/BdW/, N independent Brownian motions,
= inverse temperature
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» if f(x1,...,xn) is the probability density of position of the system
at time 0, what is the limit behavior of f?

» propagation of chaos (Boltzmann, Kac, Dobrushin): if
f(x1,. oy xn) = p0(xa) ... uO(xn) is it true that

fu(xy - ooxn) = pf(xa) ..o pnt(xw)?

in the sense of convergence of the k-point marginal fy k.



Formal limit

Use
8t5x(t) + div (de(t)) =0

or Liouville equation + BBGKY hierarchy
N L
0th + Zl VX,. (fNN Zl K(X,' — XJ)> =0

We formally expect pify := 4 vazl dx¢ — p* where p* solves the
mean-field equation

1
Oep = div (K p)p) +=

23 Ap| (MF)

or in the second order case the Vlasov / McKean-Vlasov equation

8tp+v-vxp+(K>k,u)-V\,p+ Ap=0 u:/p(x,v)dv
RY

2(3
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» Trajectorial method ([Sznitman]...): compare true trajectories to
those following characteristics for the limit equation. OK for K
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those following characteristics for the limit equation. OK for K
Lipschitz.

» Find a good metric, typically Wasserstein W; such that

OeWa(pa(t), pa(t)) < CWA(pa(t), p2(t))

for two solutions of the mean-field evolution. Apply to uf, and pf.
[Braun-Hepp, Dobrushin, Neunzert-Wick...]
» Use a relative entropy method: show a Gronwall relation for

1 i
0 < Hn(fy|p®N) = N/f,\, log w%dxl ... dxy.

[Jabin-Wang '16] for 5 < oo, K not too irregular.

» In the Coulomb case, results in 2d for first order evolutions
[Goodman-Hou-Lowengrub '90, Schochet '96,0sada '87,
Fournier-Hauray-Mischler '14, Duerinckx '15] but for d > 3 open.

» for convergence to Vlasov-Poisson/Riesz

» [Hauray-Jabin '15, Jabin-Wang '17] s < d — 2, Coulomb interaction
(or more singular) remains open.

» [Boers-Pickl '16, Lazarovici '16, Lazarovici-Pickl '17] Coulomb with
N-dependent cut-off



The modulated energy method

Idea: use Riesz-based metric:
= v|2 = / / g(x — y)d(u — v)()d( — v)(y).
R9 xRd

Observe weak-strong uniqueness property of the solutions to (MF) for

- 1I:
i = pl* < ellu = u8lI? €= C(IV2(g * p2)ll)

In the discrete case, let Xy denote (xi,...,xyn) and take for modulated
energy,

. n N N
A0 = [ s s(-)d (g > ) (94 (5 ;@,u) (v)

where A denotes the diagonal in RY x R?, and u! solves (MF).
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Theorem (S '18 (d — 2 < s < d), H.Q.Nguyen-Rosenzweig-S
21 s < d)

Case 3 = 0o. Assume (MF) admits a solution ut € L>°([0, T], L>°(R%))
with
{Vzg x ut € L°°([0, T], L>°(R?)) in the Coulomb case

additional regularity conditions on u® in the other cases

There exist constants Cy, C, depending on the norms of u* and v > 0
depending on d, s, o, s.t. ¥Vt € [0, T]

|Fn (X 1)) < (IFn(XR, 1°)| + CLNT7) e

In particular, ifp(,)v — 1 and is such that limy_, FN(X,‘\’,, u°) = 0, then
the same is true for every t € [0, T] and pf, — u*

» [Rosenzweig '20] improved the result in the Coulomb case: p® € L>
suffices (for short times if d > 3).

» Now sharp rate N=7 = Na~! [Rosenzweig-S '23]
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Let Zy = ((x1,v1), - -, (xn, viv)) where v; = X;.
Monokinetic version of (VP) (pressureless Euler-Poisson):

pt(X7 V) = Mt(x)év:uf(x)

latwdiv (pu) =0 8tu+u-Vu=—Vg*u\ (PEP)
Use modulated energy N
En (Z/Vv(.u Ll NZ| X —V;| +FN(XN /1)

Theorem (Duerinckx-S '18)

Assume Zj, solves Newton's law with initial data Z§,. Assume (u,u) is a
sufficiently regular solution to (PEP) on [0, T]. Then

En(Zi, (ut,ut)) < (En(ZR, (10, 1)) + N7F) et

In particular if limy_o En(ZY, (1°, u®)) = 0 then
phy = £ SN 6 — ut forall t € [0, T].



The commutator estimate / main functional inequality

When computing & Fn (X%, ut) we find we need to control

J[ o 00 507 Vel Za 1)*2(x,)

with ¢ = Vg * ut or JVg * ut.



The commutator estimate / main functional inequality

Proposition (S, NRS)

All Riesz-like cases s < d.
N

. Al — ‘y 1 - 2 v
./[RdXRd\A(w( ) —¥(y)) - Ve( NZ(SX 1) ® y)

< ClIDY || (Fn(Xn; 1) + N77),
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The commutator estimate / main functional inequality

Proposition (S, NRS)

All Riesz-like cases s < d.
N

' 1
S (00 = 0 st~ ey 30 = ))

< CIID |l (Fu (X, ) + N7,
Why commutator ? Let f = & vazl Oy, — [

/1/)~V(g*f)fg*(V~(1/1f)):<f, [w7w

Topic of singular integrals / Christ-Journé operators, [Hadzic, Seeger,
Smart, Street] (all div ¢ = 0).

Estimate used to treat the quantum Coulomb mean-field limit
[Golse-Paul, Rosenzweig], quasi-neutral limits [lacobelli-Han Kwan,
Rosenzweig, RS, Ben Porat]



With noise : the modulated free energy

» If 3 < oo, [Bresch-Jabin-Wang '19] incorporate the modulated
energy into their relative entropy method: use a modulated free
energy

P 1
Flfus ) = EHN(fN“"@N) + / fn(Xn) Fn(Xn, p)dxy - .. dxy

where fy = probability density on configurations.
Dissipative case only

» commutator estimate then suffices to complete the proof

» allows to treat Riesz cases s < d and attractive logarithmic
interactions ~~» convergence to Patlak-Keller-Segel



Evolution of modulated free energy
Introduce modulated Gibbs measure
1
QN,;S(M) = m

Then [Rosenzweig-S 23]
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Evolution of modulated free energy
Introduce modulated Gibbs measure
QN,@(IU’) = KN,ﬂ(,Uf)

Then [Rosenzweig-S 23]

e PNFVXN) gy (xy) ... d ()

1 1
]:}?/(me) = BHN(fMQNﬁ(N)) + m log Kiv,5(14)

| S —
2

i B(ft _ /

g W ) = BN ’ V@Nﬁ

o(1) constant
relative Fisher information

_,/df,\,//c (y)) - Ve(x —y <NZ<5X, u>®2(x,y)dxdy

commutator term

dQu,p(1")

where vt = Vg * ut + %V log put



Global in time convergence?

» Use Fisher information term and assume uniform “modulated"
Log-Sobolev inequality
2
Qns(ut) < Cus [ |94 =4
NHyn(fy|Qn s(p')) < LS/ ~ [
\l,f”_, Qu.s(1t)

relative Fisher

dQu,s(1")

relative entropy

then this + commutator estimate gives

qd

7N < —CFy+o(l)

so exponential convergence to tensorized state (generation of
chaos) [Rosenzweig-S '23]



Global-in-time convergence?

» [Guillin, Le Bris, Monmarché '21]: Jabin-Wang's relative entropy
approach combined with logarithmic Sobolev inequality to control
the entropy dissipation (= Fisher information) by the relative
entropy itself.

» [RS '21] take advantage of decay of solution / velocity field to
obtain uniform in time convergence in the sub-Coulomb case.

» [Hess-Childs '23] obtains LDP around the mean-field limit in the
same sub-Coulomb case

» prove and exploit the decay rate of Vv! as t — oo to insert into
optimized commutator estimate. Works in torus super-Coulomb
setting with exponential decay rate [Chodron de
Courcel-Rosenzweig-S '23]



Global in time result: subcoulomb case via modulated energy

Step 1. Prove that u' decays fast enough in long time thanks to the
dissipation.

Proposition (RS)

Letl1 < p<qg<oo.

2t

-5G-3)
Yoo < () )1

Inspired by [Carlen-Loss| (case of divergence-free vector field).

Step 2. Optimized version of the functional inequality: use that
Wt = MVg % it

JL o 500 =0 Tl ) 38 =)y

< 1,2 (X, ) + NT145),



Theorem (Rosenzweig-S '21)

Assume d > 3, 0 < s < d — 2, first order evolution with additive noise,
dissipative or conservative. Assume ut is a global in time bounded
solution to the limiting equation

Orp = —div (uMVg * pu) + 2ﬁ

Then
E (|FN(X/(IHUt)D S C|FN(XIQINO)| + N~

In the logarithmic case, we get instead a t° control.



Supercoulomb case via modulated free energy method

In the case of the torus: prove exponential decay of the (derivatives of
the) limiting solution

Theorem (Chodron de Courcel - Rosenzweig - S '23)

Riesz case s € [d — 2, d), gradient flow with additive noise. We have
global in time convergence:

Fulflut) < € (fﬁ(fﬁ,uo) + /\/571) .
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The attractive log case

(-A)/?g=6—1 onT¢

g(x) = log |x|

On the torus pynir = 1 is always a stationary solution of (MF). We show
it becomes unstable for 5 > f;.

The modulated energy is no longer coercive. We show that it can be
absorbed into the relative entropy if 8 < §;:

[ FuX. wfu(Xu) < 5 (fulic®) + o(1)

modulated Log Hardy-Littlewood-Sobolev inequality



Theorem (CdC - R -S)

If B < B, there exists g > 0 s.t. if i solution to (MF) with
| log 0|1« < 65 and £} an entropy solution to the fwd Kolmogorov eq,
then
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Theorem (CdC - R -S)

If B < B, there exists g > 0 s.t. if i solution to (MF) with
| log 0|1« < 65 and £} an entropy solution to the fwd Kolmogorov eq,
then
Hn(fyl(ut)®") < CS,H|0g/1,°|\W2,xfﬁ(f/87M0) + CN™
~» uniform in time convergence
If 3> s, for all € > 0 there exists pi. sol to (MF) s.t.

142 = peunit llwr.e = O(€)
and for some t. < C|loge|
151 — tunirlli2 + [1fyey — pE (e > %
where fi) = (u2)®N
Coro: We cannot have Hy(f|(ut)®N) < CHn(FIuS™N) + o(1)

(apply ineq to both 11 = jiyni and 1)
no uniform in time convergence



Proof of the commutator estimate: the electric rewriting of
the energy

Set hf =g« f. In the Coulomb case
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We have by IBP
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Proof of the commutator estimate: the electric rewriting of
the energy

Set hf =g« f. In the Coulomb case
—Ah = cyf

We have by IBP

// g(x—y)df(x)df(y):/ hfdf:—i/ N |Vh 2.
R xR R4 Cd JRrd Cd JRrd

Positivity of Fp not clear! Use suitable truncations obtained by
replacing d,, by 5)((:,-) with r; = nearest neighbor distance. Use
almost-monotonicity with respect to truncation parameter.
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Proof in the Coulomb case
Stress-energy tensor
[Vh ] = 20" 0;h" — |V A" 255

For regular f,

2
div [Vh] = 24K VA = —?thf.
d
] w0 = wt) - Velx - n)df ()
R9 x R4
=2 [ o(x)- VA (x)df(x) = —cd/ Y - div [Vh]
R4 RY
—cs [ D (9K < cal DV~ [ [ 6~ y)ai)ar(y)
Rd
Then needs to be renormalized by truncation procedure.
[Nguyen-Rosenzweig-S]: dispense with stress-tensor structure and from

paraproduct commutator estimates. Purely space-based. (Uses Riesz
transform estimates).



THANK YOU FOR YOUR ATTENTION!



