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Inference problems

Inference : signal (S) — noisy channel —— observations (Y)

Goal : recovering the signal from the observations

Bayesian setting : probabilistic model for the signal and the channel,
known to the observer

all the useful information is in the posterior :

PS = s|Y = y] = TY=ZTIS= o o= Hy (9

stat.mech. : observation = quenched disorder

estimators : §( Y), chosen to minimize (on average) some distance
between the signal and its estimation
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Matrix denoising

signal S, observations Y, n x n symmetric random matrices, §( Y)?

e multiplicative noise, Y = v/SZv'S S, Z independent
covariance estimation : S/Y population/empirical covariance

@ additive noise, Y =S+ Z S, Z independent
simplification of matrix factorization Y = XX™ + Z (or Y = XF + 2)
X matrix n x r Z noise, e.g. Gaussian Orthogonal Ensemble

well-understood in the low-rank regime r = O(1)
[Rangan, Fletcher 12] [Lesieur, Krzakala, Zdeborova 17]
[Lelarge, Miolane 19] [Barbier, Macris 19]
or subextensive r = o(n)
[Pourkamali, Barbier, Macris 23] [Barbier, Ko, Rahman 24]
not so well for extensive ranks r = ©(n)
[Maillard, Krzakala, Mézard, Zdeborova 22] [Barbier, Macris 22]
[Camilli, Mézard 23] [Barbier, Camilli, Ko, Okajima 24]
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Matrix denoising

large n limit, empirical spectral distribution of S(" — ;g

im LE[Tr((S™M)P)] = / Hs(AN) NP = i p

n—oo N

idem for Z and Y with uz and py

accuracy of an estimator §( Y) in terms of the Mean Square Error

MSE(S ZE[ = S(Y)ij)?

111

- %E[Tr«s - SV,
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The BABP denoiser

estimator proposed in [Bun, Allez, Bouchaud, Potters 16]

try §( Y) with the same eigenvectors as Y :
n . n R n
Y = Z Aj U,'U,-T S(Y) = Z Aj U,'U,-T S= Z G V,'V,-T
i=1 i=1 i=1
minimizing the square error Tr((S — §( Y)?) w.rt. {X,-} yields :

n
Ni=>"¢ulv)?
j=1
requires the knowledge of S (oracle estimator)

high-dimensional miracle : X,- i Dgasp(\)

with Dgagp a function that can be computed from ug, 1z, 1y
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The BABP denoiser

g( Y) = DBABP(Y) with Dpagp : R — R :
function acts on each eigenvalue

hence S(OYOT) = OS(Y)OT for all O € O, (orthogonal group)
equivariant function

BABP approach :
@ not explicitly Bayesian (but oracle should be optimal among the
equivariant)

@ computation of the eigenvector overlaps with replicas (heuristic)
rigorous in [Ledoit, Péché 11]

in the following : justification of the BABP estimator with explicit
assumptions and elementary computations

done via HCIZ integrals in a special case
[Maillard, Krzakala, Mézard, Zdeborova 22] [Pourkamali, Barbier, Macris 23]
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e Inference with low-degree polynomials
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Bayesian estimation

more generic setting : (S, Y) pair of correlated r.v., S € RV, Y ¢ R/

(S,Ty=YN, 8T,  |ISIE=(SS)
MSE(S) = E[||S — S(Y ||21—ZE[(S S(Y))?.

optimal estimator : §°Pt(Y) = [E[S]Y], posterior mean

hard to compute in high dimensions
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Approximate Bayesian estimation

Low-degree polynomial method :

@ for hypothesis testing [Hopkins, Steurer 17]
[Kunisky, Wein, Bandeira 22]

@ for estimation [Schramm, Wein 22]
[Montanari, Wein 22]

@ for constraint satisfaction problems [Bresler, Huang 22]

proofs of hardness results,
thought to emulate polynomial-time algorithms
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Approximate Bayesian estimation

introduce a variational space with basic functions (e.g. polynomials)

§( Y)= Z cgbs(Y), A finite set, ¢ : variational parameters
peA

reduces to a quadratic optimization problem in a smaller space:

MSE(S) = E[[IS|"] + > esMppcy —2)  csRp
B,BEA BeA
=E[|S]|?] + ¢"Mc—-2¢c"R ,
where M is a square matrix and R a vector, both of size |A| :

Mg =E[(bs(Y),bg(Y))]  Rp=E[(S,bs(Y))]
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Approximate Bayesian estimation

optimal MSE in this subspace:
MMSE 4 = E[||S|[?] + inf [¢"Mc—2¢c"R]
ceRIAI

reached for

Z Mﬂﬂ/Cﬂ/ = R/g Ve A
peA

o Me=R
& E[(S(Y),bs(Y))] = E[(S,bs(Y))] VBe A

rk : to be compared with
E[§°P‘(Y)¢(Y)] =E[S¢(Y)] forall test functions ¢
when SP(Y) = E[S]| Y]
low-degree polynomial method : {bs} = polynomials RM — RN

of degree <.D
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Symmetries in approximate Bayesian estimation

how to choose the functions {bg}sc.a ?
the larger A the better MMSE 4, but more costly
= Exploit the symmetries

G group acting through linear representations on RN and RM

g - S € RN the image of S under the transformation g € G, g - Y idem
isometric assumption: (g-S,g-T) = (S, T)

definition of f : RM — RN equivariant (covariant) : f(g- Y) =g f(Y)

G symmetry of the inference problem < (g-S,g-Y) 4 (S,Y)

Consequences :
@ S(Y) = E[S]|Y] is equivariant

@ no loss on MMSE 4 by taking the bg equivariant
(Hunt-Stein lemma)
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e Matrix denoising with orthogonally invariant priors
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Matrix denoising with orthogonally invariant priors

back to the matrix denoising problem :
Yy = 8 4+ Z() in MY™(R)

G=0,={0¢c My(R): 00T = OTO = 1,} orthogonal group
acts on M;’™(R) via conjugation : O- S = OSO’

assumptions : priors on S and Z orthogonally invariant
0.-S4Sand0.24Z2

hence (O-S,0-Y) L (S, Y) : symmetry of the inference problem
S, Z independent and orthogonally invariant = asymptotically free

ny = ps B pz (free additive convolution)
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Matrix denoising with orthogonally invariant priors

best estimator of degree < D ?
i.e. such that §( Y); j polynomial of degree at most D in
Y11, Yi2,..., Yan}
equivariant (under conjugation by orthogonal matrices) polynomials
are of the form YP(Tr(Y))% (Tr(Y?2))% ... (Tr(YD))%
degree =p+ ) ,iqi <D

~

D
consider first the “scalar” estimators S(Y)= > ¢, YP
p=0
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Matrix denoising with orthogonally invariant priors

~ D
S(Y) = " ¢, YP minimizes the MSE when Mc = R, with :
p=0

1 , 1
Mpp = —E[Te(YP*P)]  Rp=—E[T(SY)]  p.p=0,1,....D

limit n — oo of M and R ?
o Mpy — ME,?;,) = py p+p Hankel matrix, invertible VD
@ with some free-probability computation (S, Z asymptotically free)
Rp = VE[T(YP*)] ~ LE[TH(Z(S + 2)P)]

p+1

%R( = 1Y p+1 — ZRZm Z Y jivo Y

Jt s im>0
it Hm=pA=m
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Matrix denoising with orthogonally invariant priors

given uig, piz, py = ps B pz, for each finite D, large n limit of the
optimal polynomial of degree < D, S(Y) = D(P)(Y), obtained by
solving a linear system of dimension D + 1:

/,uy(d)\)D(D)(/\)Ap -Ry® vpe{0,1,...,D}

moreover D(P) — Dgagp as D — oo, because

/ py(dN)Dpap(MA° = R vp >0

hence D(P) = orthogonal projection of Dgagp 0N the subspace of
polynomials of degree at most D, within L2(R, uzy)
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Matrix denoising with orthogonally invariant priors

the equivariant polynomials are linear combinations of
YP(Tr(Y))% (Tr(Y?2))% ... (Tr(YD))%
. D
we only considered S(Y) = > ¢, YP
p=0
fortunately, the non-scalar terms are asymptotically irrelevant :

@ when n — oo, Tr(Y/) concentrates around E[Tr(Y/)]

@ more precisely, the (Gaussian) fluctuations of Tr( Y/) — E[Tr( /)]
are not enough correlated with S to modify the MMSE
(second-order free probability) [Mingo, Speicher 06]

concludes the justification of the optimality of BABP
(modulo the exchange of n — oo and D — c0)
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Matrix denoising with orthogonally invariant priors

Example : Wishart signal corrupted by Gaussian noise

e SN — ﬁx(n)(x(n))T — ﬁﬂn

X is an n x r matrix filled with i.i.d. A’(0, 1)
a=n/r

o Z( = /2B with B ~ GOE
{Bi}icjiid. N (0,1) Bij=B;;

(B} iid. N'(0,2)
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Matrix denoising with orthogonally invariant priors
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larger o (smaller rank) requires larger D :

0.01

support of uy made of two disjoint intervals,

Dgagp more difficult to approximate by polynomials
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© Beyond orthogonal invariance

Guilhem Semerjian (LPENS) 28.01.2025/ IRS 23/28



Beyond orthogonal invariance

what if the priors on S and Z are only asymptotically orthogonally
invariant ?

many universality results in Random Matrix Theory :

@ semi-circle law for Wigner matrices, not only GOE

@ Marcenko-Pastur law for Wishart matrices (with X not necessarily
Gaussian)

@ eigenvectors delocalized and approximately isotropic

@ freeness for Wigner matrices

° ...

are they strong enough to imply the universality of BABP as an optimal
estimator ?
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Beyond orthogonal invariance

Generalization of the example :
r
Yij =75 <\1ﬁ 2 XX+ \/EB,-,,) =Sij+2Zij
u:

Xi, iid. E[X;,] =0, IE[XEM] =1
B;;i.i.d. E[B;;] =0, IE[B,?J] =1
with X and B not necessarily Gaussian

@ non-universality in the law of B
because S;; and Z;; are of the same order,
scalar denoising problem not universal

@ conjectured universality in the law of X (for finite D estimators)
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Beyond orthogonal invariance

orthogonal invariance is broken, but permutation invariance remains :

(0-8)ij=Sotyoy ~ (0:S0-Y)=(S,Y)
equivariant polynomials (under permutations) indexed by multigraphs :

(ba(V))ij= . I VYaaewn

ol e={ab}cE
p(v)=ip(w)=j

Examples : cf. traffic distributions [Male 20]
@ 0—o0 Yij
@ O—e—O (Yz)w‘

@ o0—o0 Q YiiTe(Y)

° O—Q Yij(Yii+Yjij) not orthogonally equivariant
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Beyond orthogonal invariance

Assuming inversion symmetry (X L -X, B 4 —B) these 4 were the
only relevant of degree < 2, and 12 more of degree 3 :

0—’—'—0,0—0—OQsO—O 0,0—OQQ

LHPQHF@HgQHQ

after some computations, large n limit of MMSE for polynomials of
degree < 3:

@ is independent of the law of X
o is reached by (S(Y))i; = ¢1Yij+ ca(Y2)ij + ca(Y3)i, + Yy,
@ if the noise is Gaussian, ¢, = 0, one finds back D®)
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Conclusions

@ Low-degree polynomials versatile approach when a direct
computation is not possible

Believed to capture polynomial-time algorithms

@ universality conjecture in the law of X; , for S = XXT :
@ strong version (optimal estimators) wrong for some laws and («, A)

@ exponential-time algorithm better than BABP [Camilli, Mézard 23]

@ prior on X relevant in the sub-extensive rank regime
[Pourkamali, Barbier, Macris 23] [Barbier, Ko, Rahman 24]
@ violates an information-theoretic bound
[Barbier, Camilli, Ko, Okajima 24]

e weak version (estimators with D finite) still open

= hard phases in the (a, A) phase diagram
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