Matrix denoising via low-degree polynomials

Guilhem Semerjian

LPENS

28.01.2025 / IRS

based on J. Stat. Phys. 191, 139 (2024)

Outline

- Introduction
- Inference with low-degree polynomials
- Matrix denoising with orthogonally invariant priors
- Beyond orthogonal invariance

Outline

- Introduction
- Inference with low-degree polynomials
- Matrix denoising with orthogonally invariant priors
- Beyond orthogonal invariance

Inference problems

Goal: recovering the signal from the observations

Bayesian setting: probabilistic model for the signal and the channel, known to the observer

all the useful information is in the posterior :

$$\mathbb{P}[S=s|Y=y] = \frac{\mathbb{P}[Y=y|S=s]}{\mathbb{P}[Y=y]} \propto e^{-H_y(s)}$$

stat.mech. : observation \Rightarrow quenched disorder

estimators : $\widehat{S}(Y)$, chosen to minimize (on average) some distance between the signal and its estimation

Matrix denoising

signal S, observations Y, $n \times n$ symmetric random matrices, $\widehat{S}(Y)$?

- multiplicative noise, $Y=\sqrt{S}Z\sqrt{S}$ S,Z independent covariance estimation : S/Y population/empirical covariance

or subextensive r = o(n)

[Pourkamali, Barbier, Macris 23] [Barbier, Ko, Rahman 24] not so well for extensive ranks $r = \Theta(n)$

[Maillard, Krzakala, Mézard, Zdeborová 22] [Barbier, Macris 22] [Camilli, Mézard 23] [Barbier, Camilli, Ko, Okajima 24]

Matrix denoising

large *n* limit, empirical spectral distribution of $S^{(n)} o \mu_S$

$$\lim_{n\to\infty}\frac{1}{n}\mathbb{E}[\mathrm{Tr}((S^{(n)})^p)]=\int \mu_{\mathcal{S}}(\mathrm{d}\lambda)\,\lambda^p\equiv\mu_{\mathcal{S},p}$$

idem for Z and Y with μ_Z and μ_Y

accuracy of an estimator $\widehat{S}(Y)$ in terms of the Mean Square Error

$$\begin{split} \text{MSE}(\widehat{\mathcal{S}}) &= \frac{1}{n} \sum_{i,j=1}^{n} \mathbb{E}[(\mathcal{S}_{i,j} - \widehat{\mathcal{S}}(Y)_{i,j})^{2}] \\ &= \frac{1}{n} \mathbb{E}[\text{Tr}((\mathcal{S} - \widehat{\mathcal{S}}(Y))^{2})] \;, \end{split}$$

The BABP denoiser

estimator proposed in

[Bun, Allez, Bouchaud, Potters 16]

try $\widehat{S}(Y)$ with the same eigenvectors as Y:

$$Y = \sum_{i=1}^{n} \lambda_i u_i u_i^T \qquad \widehat{S}(Y) = \sum_{i=1}^{n} \widehat{\lambda}_i u_i u_i^T \qquad S = \sum_{i=1}^{n} \zeta_i v_i v_i^T$$

minimizing the square error $\operatorname{Tr}((S-\widehat{S}(Y)^2) \text{ w.r.t. } \{\widehat{\lambda}_i\} \text{ yields}:$

$$\widehat{\lambda}_i = \sum_{j=1}^n \zeta_j (u_i^T v_j)^2$$

requires the knowledge of S (oracle estimator)

high-dimensional miracle : $\widehat{\lambda}_i \underset{n \to \infty}{\approx} \mathcal{D}_{\text{BABP}}(\lambda_i)$

with \mathcal{D}_{BABP} a function that can be computed from μ_{S} , μ_{Z} , μ_{Y}

The BABP denoiser

$$\widehat{\mathcal{S}}(Y)=\mathcal{D}_{\mathrm{BABP}}(Y)$$
 with $\mathcal{D}_{\mathrm{BABP}}:\mathbb{R} o\mathbb{R}$: function acts on each eigenvalue

hence
$$\widehat{S}(OYO^T) = O\widehat{S}(Y)O^T$$
 for all $O \in \mathcal{O}_n$ (orthogonal group) : equivariant function

BABP approach:

- not explicitly Bayesian (but oracle should be optimal among the equivariant)
- computation of the eigenvector overlaps with replicas (heuristic)
 rigorous in [Ledoit, Péché 11]

in the following: justification of the BABP estimator with explicit assumptions and elementary computations

done via HCIZ integrals in a special case

[Maillard, Krzakala, Mézard, Zdeborová 22] [Pourkamali, Barbier, Macris 23]

Outline

- Introduction
- Inference with low-degree polynomials
- Matrix denoising with orthogonally invariant priors
- 4 Beyond orthogonal invariance

Bayesian estimation

more generic setting : (S, Y) pair of correlated r.v., $S \in \mathbb{R}^N$, $Y \in \mathbb{R}^M$

$$\langle S, T \rangle = \sum_{i=1}^{N} S_i T_i, \qquad ||S||^2 = \langle S, S \rangle$$

$$MSE(\widehat{S}) = \mathbb{E}[||S - \widehat{S}(Y)||^2] = \sum_{i=1}^{N} \mathbb{E}[(S_i - \widehat{S}_i(Y))^2].$$

optimal estimator : $\widehat{S}^{\mathrm{opt}}(Y) = \mathbb{E}[S|Y]$, posterior mean

hard to compute in high dimensions

Approximate Bayesian estimation

Low-degree polynomial method:

for hypothesis testing

[Hopkins, Steurer 17] [Kunisky, Wein, Bandeira 22]

for estimation

[Schramm, Wein 22] [Montanari, Wein 22]

for constraint satisfaction problems

[Bresler, Huang 22]

proofs of hardness results,

thought to emulate polynomial-time algorithms

Approximate Bayesian estimation

introduce a variational space with basic functions (e.g. polynomials)

$$\widehat{S}(Y) = \sum_{eta \in \mathcal{A}} c_eta b_eta(Y) \;,\; \mathcal{A}$$
 : finite set, $\; c$: variational parameters

reduces to a quadratic optimization problem in a smaller space:

$$egin{aligned} ext{MSE}(\widehat{\mathcal{S}}) &= \mathbb{E}[||\mathcal{S}||^2] + \sum_{eta, eta' \in \mathcal{A}} c_{eta} \mathcal{M}_{eta, eta'} c_{eta'} - 2 \sum_{eta \in \mathcal{A}} c_{eta} \mathcal{R}_{eta} \ &= \mathbb{E}[||\mathcal{S}||^2] + c^T \mathcal{M} c - 2c^T \mathcal{R} \;, \end{aligned}$$

where $\mathcal M$ is a square matrix and $\mathcal R$ a vector, both of size $|\mathcal A|$:

$$\mathcal{M}_{\beta,\beta'} = \mathbb{E}[\langle b_{\beta}(Y), b_{\beta'}(Y) \rangle] \qquad \mathcal{R}_{\beta} = \mathbb{E}[\langle S, b_{\beta}(Y) \rangle]$$

Approximate Bayesian estimation

optimal MSE in this subspace:

$$\text{MMSE}_{\mathcal{A}} = \mathbb{E}[||S||^2] + \inf_{c \in \mathbb{R}^{|\mathcal{A}|}} [c^T \mathcal{M} c - 2c^T \mathcal{R}]$$

reached for

$$\begin{split} & \sum_{\beta' \in \mathcal{A}} \mathcal{M}_{\beta,\beta'} c_{\beta'} = \mathcal{R}_{\beta} \quad \forall \beta \in \mathcal{A} \\ \Leftrightarrow & \mathcal{M} c = \mathcal{R} \\ \Leftrightarrow & \mathbb{E}[\langle \widehat{S}(Y), b_{\beta}(Y) \rangle] = \mathbb{E}[\langle S, b_{\beta}(Y) \rangle] \quad \forall \beta \in \mathcal{A} \end{split}$$

rk: to be compared with

$$\mathbb{E}[\widehat{S}^{\mathrm{opt}}(Y)\varphi(Y)] = \mathbb{E}[S\,\varphi(Y)]$$
 for all test functions $\,arphi$ when $\widehat{S}^{\mathrm{opt}}(Y) = \mathbb{E}[S|Y]$

low-degree polynomial method : $\{b_{\beta}\}$ = polynomials $\mathbb{R}^{M} \to \mathbb{R}^{N}$ of degree ≤ D ~

Symmetries in approximate Bayesian estimation

how to choose the functions $\{b_{\beta}\}_{\beta\in\mathcal{A}}$?

the larger A the better $MMSE_A$, but more costly

⇒ Exploit the symmetries

G group acting through linear representations on \mathbb{R}^N and \mathbb{R}^M

 $g \cdot S \in \mathbb{R}^N$ the image of S under the transformation $g \in G$, $g \cdot Y$ idem isometric assumption: $\langle g \cdot S, g \cdot T \rangle = \langle S, T \rangle$

definition of $f: \mathbb{R}^M o \mathbb{R}^N$ equivariant (covariant) : $f(g \cdot Y) = g \cdot f(Y)$

G symmetry of the inference problem \Leftrightarrow $(g \cdot S, g \cdot Y) \stackrel{\mathrm{d}}{=} (S, Y)$

Consequences:

- $\widehat{S}^{\mathrm{opt}}(Y) = \mathbb{E}[S|Y]$ is equivariant
- ullet no loss on $\mathrm{MMSE}_\mathcal{A}$ by taking the $oldsymbol{b}_eta$ equivariant

(Hunt-Stein lemma)

Outline

- Introduction
- Inference with low-degree polynomials
- 3 Matrix denoising with orthogonally invariant priors
- 4 Beyond orthogonal invariance

back to the matrix denoising problem:

$$Y^{(n)} = S^{(n)} + Z^{(n)} \text{ in } M_n^{\operatorname{sym}}(\mathbb{R})$$

$$G = \mathcal{O}_n = \{O \in M_n(\mathbb{R}) : OO^T = O^TO = \mathbb{1}_n\}$$
 orthogonal group acts on $M_n^{\text{sym}}(\mathbb{R})$ via conjugation : $O \cdot S = OSO^T$

assumptions: priors on S and Z orthogonally invariant

$$O \cdot S \stackrel{\mathrm{d}}{=} S$$
 and $O \cdot Z \stackrel{\mathrm{d}}{=} Z$

hence $(O \cdot S, O \cdot Y) \stackrel{d}{=} (S, Y)$: symmetry of the inference problem

S, Z independent and orthogonally invariant \Rightarrow asymptotically free $\mu_Y = \mu_S \boxplus \mu_Z$ (free additive convolution)

best estimator of degree $\leq D$?

i.e. such that $\widehat{S}(Y)_{i,j}$ polynomial of degree at most D in

$$\{Y_{1,1}, Y_{1,2}, \ldots, Y_{n,n}\}$$

equivariant (under conjugation by orthogonal matrices) polynomials

are of the form
$$Y^p(\operatorname{Tr}(Y))^{q_1}(\operatorname{Tr}(Y^2))^{q_2}\dots(\operatorname{Tr}(Y^D))^{q_D}$$

degree =
$$p + \sum_{i} iq_{i} \leq D$$

consider first the "scalar" estimators

$$\widehat{S}(Y) = \sum_{p=0}^{D} c_p Y^p$$

$$\widehat{S}(Y) = \sum\limits_{p=0}^{D} c_p Y^p$$
 minimizes the MSE when $\mathcal{M}c = \mathcal{R},$ with :

$$\mathcal{M}_{p,p'} = \frac{1}{n} \mathbb{E}[\operatorname{Tr}(Y^{p+p'})] \qquad \mathcal{R}_p = \frac{1}{n} \mathbb{E}[\operatorname{Tr}(SY^p)] \qquad p,p' = 0,1,\ldots,D$$

limit $n \to \infty$ of \mathcal{M} and \mathcal{R} ?

- $\mathcal{M}_{p,p'} o \mathcal{M}_{p,p'}^{(\infty)} = \mu_{Y,p+p'}$ Hankel matrix, invertible $\forall D$
- with some free-probability computation (S, Z asymptotically free)

$$\mathcal{R}_{p} = \frac{1}{n} \mathbb{E}[\operatorname{Tr}(Y^{p+1})] - \frac{1}{n} \mathbb{E}[\operatorname{Tr}(Z(S+Z)^{p})]$$

$$\to \mathcal{R}_{p}^{(\infty)} = \mu_{Y,p+1} - \sum_{m=1}^{p+1} \kappa_{Z,m} \sum_{\substack{j_{1}, \dots j_{m} \geq 0 \\ j_{1} + \dots + j_{m} = p+1-m}} \mu_{Y,j_{1}} \dots \mu_{Y,j_{m}}$$

given μ_S , μ_Z , $\mu_Y = \mu_S \boxplus \mu_Z$, for each finite D, large n limit of the optimal polynomial of degree $\leq D$, $\widehat{S}(Y) = \mathcal{D}^{(D)}(Y)$, obtained by solving a linear system of dimension D+1:

$$\int \mu_{Y}(\mathrm{d}\lambda)\mathcal{D}^{(D)}(\lambda)\lambda^{p} = \mathcal{R}_{p}^{(\infty)} \qquad \forall p \in \{0, 1, \dots, D\}$$

moreover $\mathcal{D}^{(D)} o \mathcal{D}_{BABP}$ as $D o \infty$, because

$$\int \mu_{\mathsf{Y}}(\mathrm{d}\lambda)\mathcal{D}_{\mathrm{BABP}}(\lambda)\lambda^{\boldsymbol{p}} = \mathcal{R}_{\boldsymbol{p}}^{(\infty)} \qquad \forall \boldsymbol{p} \geq \mathbf{0}$$

hence $\mathcal{D}^{(D)}=$ orthogonal projection of \mathcal{D}_{BABP} on the subspace of polynomials of degree at most D, within $L^2(\mathbb{R}, \mu_Y)$

the equivariant polynomials are linear combinations of

$$Y^p(\operatorname{Tr}(Y))^{q_1}(\operatorname{Tr}(Y^2))^{q_2}\dots(\operatorname{Tr}(Y^D))^{q_D}$$

we only considered
$$\widehat{\mathcal{S}}(Y) = \sum\limits_{p=0}^{D} c_p Y^p$$

fortunately, the non-scalar terms are asymptotically irrelevant :

- when $n \to \infty$, $\operatorname{Tr}(Y^j)$ concentrates around $\mathbb{E}[\operatorname{Tr}(Y^j)]$
- more precisely, the (Gaussian) fluctuations of $\mathrm{Tr}(Y^j) \mathbb{E}[\mathrm{Tr}(Y^j)]$ are not enough correlated with S to modify the MMSE (second-order free probability) [Mingo, Speicher 06]

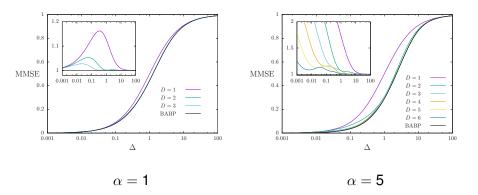
concludes the justification of the optimality of BABP (modulo the exchange of $n \to \infty$ and $D \to \infty$)

Example: Wishart signal corrupted by Gaussian noise

•
$$S^{(n)} = \frac{1}{\sqrt{nr}} X^{(n)} (X^{(n)})^T - \frac{1}{\sqrt{\alpha}} \mathbb{1}_n$$

 $X^{(n)}$ is an $n \times r$ matrix filled with i.i.d. $\mathcal{N}(0,1)$
 $\alpha = n/r$

•
$$Z^{(n)}=\sqrt{\frac{\Delta}{n}}B$$
 with $B\sim \mathsf{GOE}$ $\{B_{i,j}\}_{i< j}$ i.i.d. $\mathcal{N}\left(0,1\right)$ $B_{i,j}=B_{j,i}$ $\{B_{i,j}\}$ i.i.d. $\mathcal{N}\left(0,2\right)$



larger α (smaller rank) requires larger D:

support of μ_Y made of two disjoint intervals, $\mathcal{D}_{\text{BABP}}$ more difficult to approximate by polynomials

Outline

- Introduction
- Inference with low-degree polynomials
- Matrix denoising with orthogonally invariant priors
- Beyond orthogonal invariance

what if the priors on S and Z are only asymptotically orthogonally invariant?

many universality results in Random Matrix Theory:

- semi-circle law for Wigner matrices, not only GOE
- Marcenko-Pastur law for Wishart matrices (with X not necessarily Gaussian)
- eigenvectors delocalized and approximately isotropic
- freeness for Wigner matrices
- ...

are they strong enough to imply the universality of BABP as an optimal estimator?

Generalization of the example:

$$\begin{aligned} Y_{i,j} &= \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{r}} \sum_{\mu=1}^{r} X_{i,\mu} X_{j,\mu} + \sqrt{\Delta} B_{i,j} \right) = S_{i,j} + Z_{i,j} \\ X_{i,\mu} \text{ i.i.d. } \mathbb{E}[X_{i,\mu}] &= 0, \ \mathbb{E}[X_{i,\mu}^2] = 1 \\ B_{i,j} \text{ i.i.d. } \mathbb{E}[B_{i,j}] &= 0, \ \mathbb{E}[B_{i,j}^2] = 1 \\ \text{with } X \text{ and } B \text{ not necessarily Gaussian} \end{aligned}$$

- non-universality in the law of B because $S_{i,j}$ and $Z_{i,j}$ are of the same order, scalar denoising problem not universal
- conjectured universality in the law of X (for finite D estimators)

orthogonal invariance is broken, but permutation invariance remains :

$$(\sigma \cdot S)_{i,j} = S_{\sigma(i),\sigma(j)}$$
 $(\sigma \cdot S, \sigma \cdot Y) \stackrel{d}{=} (S, Y)$

equivariant polynomials (under permutations) indexed by multigraphs :

$$(b_G(Y))_{i,j} = \sum_{\substack{\phi \in [n]^V \\ \phi(v) = i, \phi(w) = j}} \prod_{e = \{a,b\} \in E} Y_{\phi(a),\phi(b)}$$

Examples:

cf. traffic distributions [Male 20]

- ----
- $Y_{i,i}$
- $\bullet \circ \bullet \circ (Y^2)_{i,j}$
- 0-----

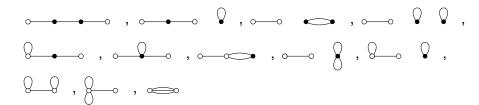
 $Y_{i,j}\operatorname{Tr}(Y)$

• •

 $Y_{i,j}(Y_{i,i}+Y_{j,j})$

not orthogonally equivariant

Assuming inversion symmetry $(X \stackrel{\mathrm{d}}{=} -X, B \stackrel{\mathrm{d}}{=} -B)$ these 4 were the only relevant of degree \leq 2, and 12 more of degree 3 :



after some computations, large n limit of MMSE for polynomials of degree \leq 3:

- is independent of the law of X
- is reached by $(\widehat{S}(Y))_{i,j} = c_1 Y_{i,j} + c_2 (Y^2)_{i,j} + c_3 (Y^3)_{i,j} + c_4 Y^3_{i,j}$
- ullet if the noise is Gaussian, $c_4=0$, one finds back $\mathcal{D}^{(3)}$

Conclusions

- Low-degree polynomials versatile approach when a direct computation is not possible
 Believed to capture polynomial-time algorithms

• universality conjecture in the law of $X_{i,u}$ for $S = XX^T$:

- strong version (optimal estimators) wrong for some laws and (α, Δ)
 - exponential-time algorithm better than BABP [Camilli, Mézard 23]
 - prior on X relevant in the sub-extensive rank regime
 [Pourkamali, Barbier, Macris 23] [Barbier, Ko, Rahman 24]
 - violates an information-theoretic bound
 - [Barbier, Camilli, Ko, Okajima 24]
 - weak version (estimators with D finite) still open
 - \Rightarrow hard phases in the (α, Δ) phase diagram

