Non-ergodic dynamics induced by measurements

Andrea De Luca INHOMOGENEOUS RANDOM SYSTEMS 29 January 2025

COLLABORATORS

Adam Nahum (ENS)

Pierre Le Doussal (ENS)

Tianci Zhou (Virginia Tech)

Chunxiao Liu (Berkeley)

Guido Giachetti (CYU \rightarrow LPENS)

Federico Gerbino

(PhD - LPTMS)

arXiv:2312.17744

Quantum Rep. 2024, 6(2), 200-230 (2401.00822) arXiv:2501.00547

OUTLINE

Recap on thermalisation in many-body quantum systems

□ Entanglement production:

- membrane picture
- $\,\circ\,$ random unitary circuits

□ Monitored systems and measurement-induced phase transition

□ Classically monitored systems

- $\,\circ\,$ mapping to disordered systems
- $\,\circ\,\,$ directed polymer solution

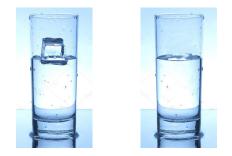
Back to quantum

- \circ purification dynamics
- \circ random matrices
- \circ universality

Out-of-equilibrium dynamics of isolated many-body quantum systems

Fundamental questions

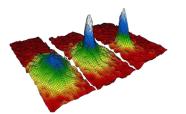
- How does a many-body system thermalise?
- Universality behind thermalization?
- Can thermalization be avoided?
- New out-of-equilibrium phases?



Thermalization = loss of memory of initial conditions

Experimental progress

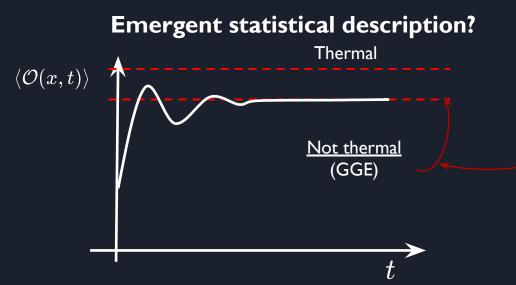
cold atoms, trapped ions, etc. \rightarrow fine-tuned interaction in isolated many-body quantum systems



Sudden quantum quenches in homogeneous systems

- Initial homogeneous high-energy state
- 2. Evolution with homogeneous H
- 3. Local relaxation to a steady state

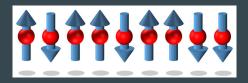
CFT, Calabrese, Cardy, '06



Fix by conserved quantities $\hat{\mathcal{Q}} = \int dx \, \hat{q}(x) \,, \, [\hat{H}, \hat{\mathcal{Q}}] = 0$ $\langle \psi(t) | \hat{q}(x) | \psi(t) \rangle = \langle \psi(0) | \hat{q}(x) | \psi(0) \rangle$ enforce conservation of charges $\rho \propto e^{-\sum_{j} \beta_{j} \mathcal{Q}_{j}}$ Rigol *et al* '07

Role of Locality

- I. Only way to observe relaxation is to use a smaller class of observables
- 2. A many-body system is extended in space

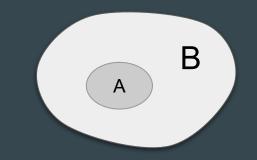


$$\mathcal{H} = \otimes_{i=1}^L \mathcal{H}_i$$

3. Can the system behave as its own "bath"?

Local observables (with support only in A) can relax:

$$\langle O(x)
angle_{\infty} = \lim_{t
ightarrow\infty} \langle O(x,t)
angle$$



Thermalisation and entanglement

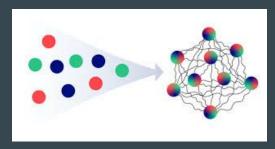
• Entanglement is a distinctive and unique feature of quantum mechanics

$$\ket{\psi} = rac{1}{\sqrt{2}} (\ket{\uparrow \downarrow} - \ket{\downarrow \uparrow})$$

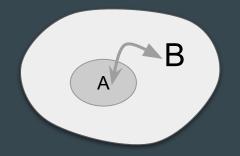
• It implies information is partially lost when a portion of the system is discarded

$$ho = |\psi
angle \langle \psi| \;, \qquad
ho_A = {
m Tr}_B[
ho] \;, \qquad {
m Tr}[
ho_A^2] < 1$$

• Thermalization must produce a lot of entanglement



$$ho_A\sim rac{e^{-eta H_A}}{Z}$$
 $ext{Tr}[
ho_A^2]\sim e^{-s_2 L_A}$



WHAT HAS BEEN DONE

Standard methods do not apply: far from the groundstate, no small parameter

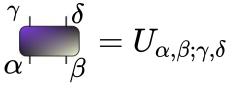
Numerical methods

- DMRG, exact diagonalization
- Restrictions: small times, small sizes

- Bethe-Ansatz, free theories
- Restrictions: fine-tuned, non-ergodic dynamics
- standard ETH does not hold

RANDOM CIRCUITS

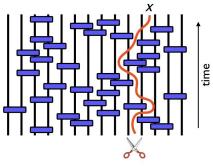
Hilbert space of a single q-dit

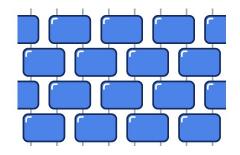


gate acting on two sites

Recipe for building random circuits

- consider many q-dits
- choose a geometry to your liking
- make the q-dits interact with random gates (Haar distributed)

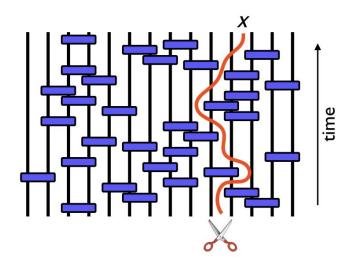




Skinner et al. PRX 7, 031016 (2017)

ENTANGLEMENT GROWTH & MINIMAL CUT

Renyi entropies: $S_n(x) = \frac{1}{1-n}\log(\operatorname{Tr}[\rho_x^n])$ Von Neumann: $S_{VN}(x) = \lim_{n \to 1} S_n(x) = -\operatorname{Tr}[\rho_x \log(\rho_x)]$ Hartley entropy: $S_0(x)$ Number of non-vanishing eigenvalues



 $S_0(x) \propto$ length of the minimal cut $\sim t$

Skinner et al. PRX 7, 031016 (2017)

In general, entanglement entropies grow linearly with t

Random Unitary circuits

- Consider local degrees of freedom (e.g. spins)
- Evolve with local interactions

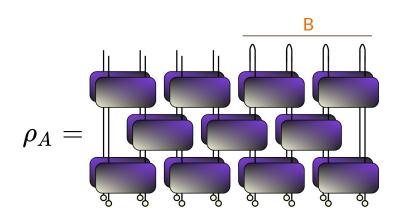
• Each gate is independently chosen as a (small) random unitary matrix

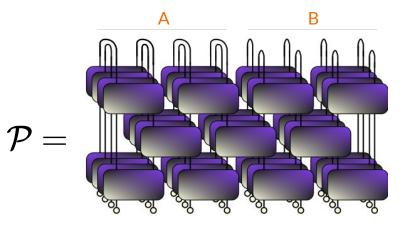
- No conserved quantity is present (not even the energy!)
- Diagrammatic notation is advantageous

Example: expressing the purity

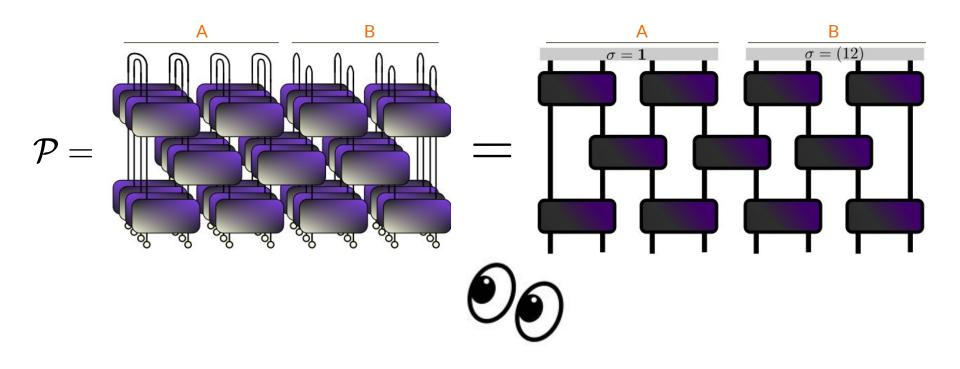
$$|\Psi(t)
angle\langle\Psi(t)|=$$

$$ho_A = {
m Tr}_B[|\Psi(t)
angle \langle \Psi(t)|] \;, {\cal P} = {
m Tr}[
ho_A^2]$$





Purity as a classical partition function

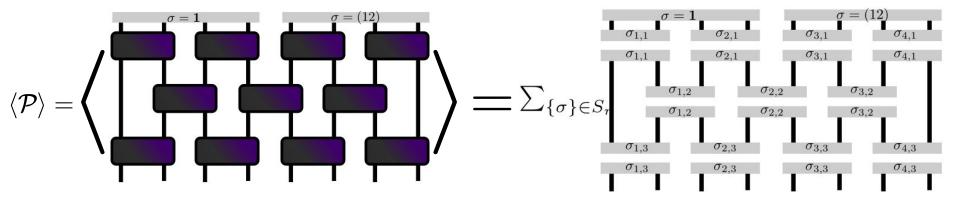


Diagrammatic average for random matrix

• average of large unitary matrices are done similarly

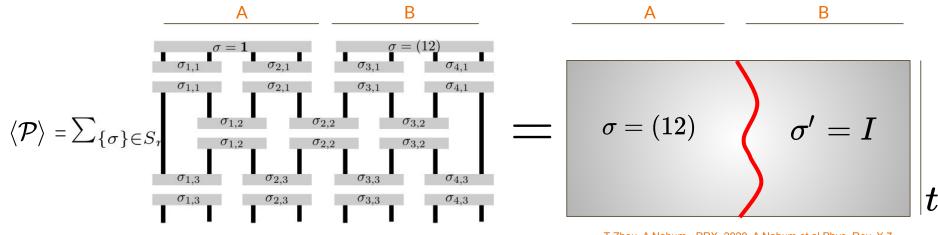
JN JU JU JU $\cong \sum_{\sigma \in S_n} \frac{\sigma}{\sigma}$

Average purity as a classical partition function



Classical partition function where local degrees of freedom range over permutations

Coarse-grained / membrane picture



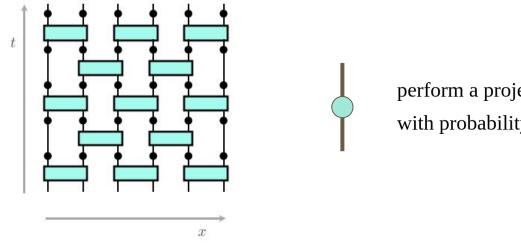
T Zhou, A Nahum - PRX, 2020, A Nahum et al Phys. Rev. X 7,

 $\langle \mathcal{P}
angle \sim e^{-s_2 t}$, free energy of a membrane extended in time

Beyond unitary dynamics: including measurements

+

UNITARY DYNAMICS + MEASUREMENTS



perform a projective measurement of S_z with probability p

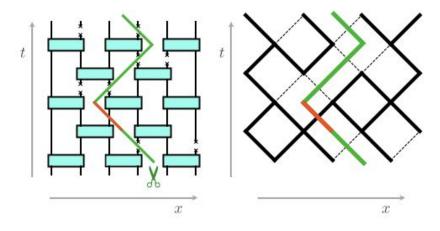
 $|\Psi_0
angle
ightarrow |\Psi_t(\mathbf{a} = ext{positions} + ext{outcomes of measurements})
angle$

what is the entanglement of the resulting quantum state?

B. Skinner *et al.*, PRX, 9 (2019)

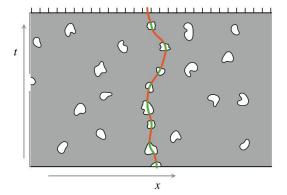
FROM MINIMAL CUT TO DIRECTED PERCOLATION

BONDS WHERE MEASUREMENTS OCCUR HAVE NO "COST" FOR THE PATH

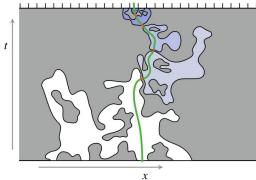


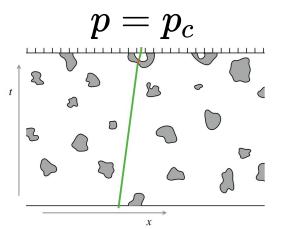
COARSE-GRAINED PICTURE

 $p < p_c$



 $p = p_c$





 $S \sim t$ S(t) $S \sim \log t$ $S \sim t^0$ B. Skinner et al., PRX, 9 (2019)

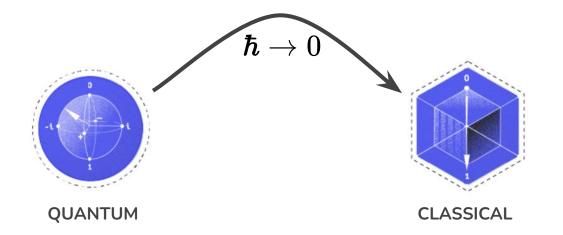
MEASUREMENT-INDUCED PHASE TRANSITIONS (MIPT)

volume law entangled phase

area law disentangled phase

- Hartley entropy $S_0 / q \rightarrow \infty$: MIPT = classical directed percolation, **NOT TRUE IN GENERAL**
- Essentially impossible to observe (post-selection)
- Simulatable vs non-simulatable phase
- Hard to study analytically in general
 - it requires strong interactions (absent in non-interacting theories)
 - intrinsically stochastic

Spinoff: Explore the classical analogous of MIPT



Classical Markov chain

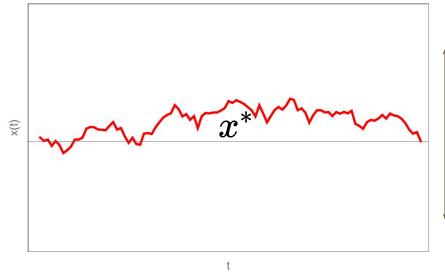
• system following stochastic dynamics

dx = f(x)dt + g(x)dW

• an observer tries to locate x

Fokker-Planck ightarrow p(x)

e.g. random walk



Shannon entropy: $S[p] = -\int dx \; p(x,t) \log p(x,t)$

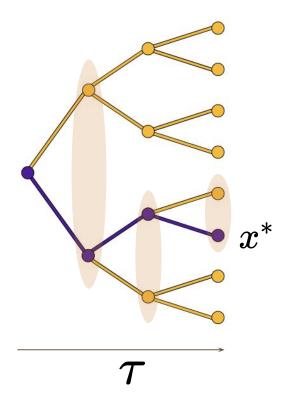
uncertainty grows with time

Example: directed random walk on a tree

 $x^* =$ a random path on the tree

Motivation

- solvability
- interpretation as Lyapunov exponent of chaotic system

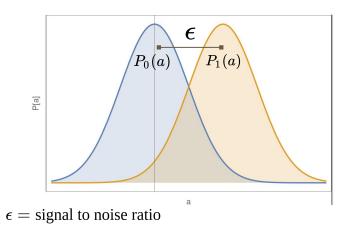


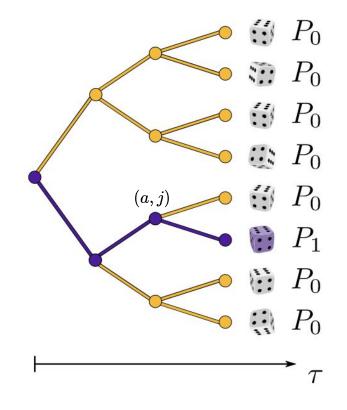
arXiv: 2501.00547 see also: SWP Kim, A Lamacraft (2404.07263)

Mitigate uncertainty with measurements

• an observer performs measurements on each state at each time

$$a_j \sim ext{Prob}(a_j | x) = egin{cases} P_0(a_j) & j ext{ is empty} \ P_1(a_j) & j ext{ is full} \end{cases}$$





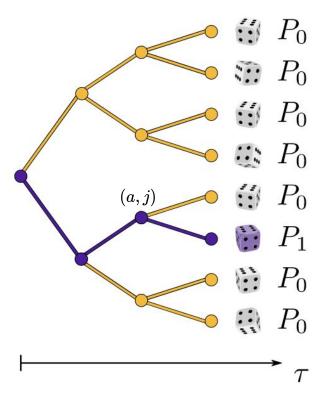
Mitigate uncertainty with measurements

• an observer performs measurements on each state at each time

$$a_j \sim ext{Prob}(a_j | x) = egin{cases} P_0(a_j) & j ext{ is empty} \ P_1(a_j) & j ext{ is full} \ \end{pmatrix}$$

• use measurements to reconstruct the distribution (Bayes's theorem)

$$egin{array}{l} \mathrm{P}(x|\mathbf{a}) \propto rac{\mathrm{Prob}(a|x)}{\sum_{x'} \mathrm{Prob}(a|x')} \ P(\mathbf{a}) = P(\mathbf{a}|x^*) \end{array}$$



Mapping to directed polymer on the Cayley tree

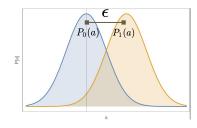
• disorder on each node chosen according

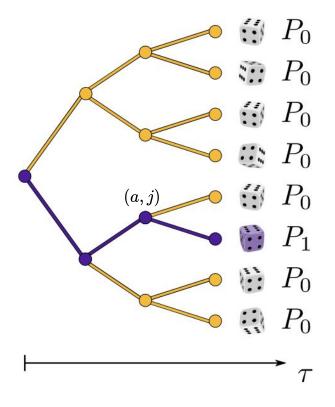
 $a_j \sim P_0(a_j)$

• Boltzmann weight of a given path

$$z_x = \prod_{j \in x} rac{P_1(a_j)}{P_0(a_j)}$$

 $\epsilon \gg 1 \Rightarrow$ strong disorder / low temperature phase $\epsilon \ll 1 \Rightarrow$ weak disorder/ high temperature phase

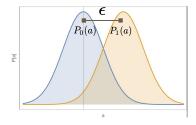


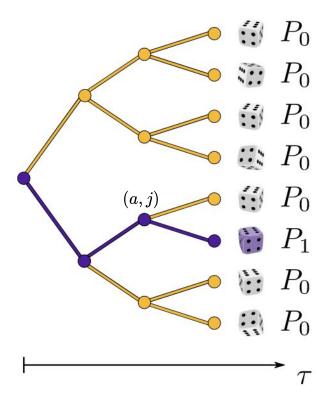


Mapping to directed polymer on the Cayley tree

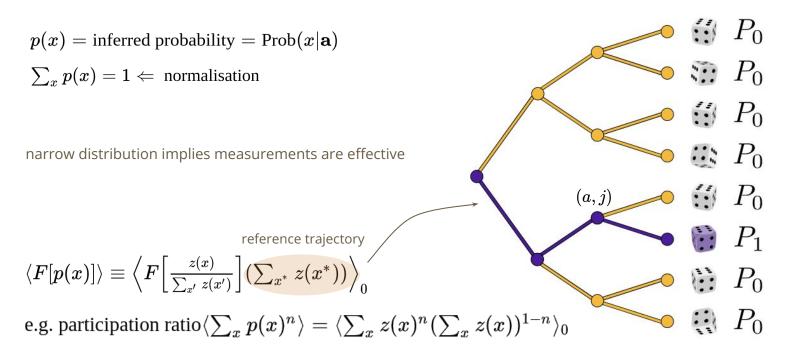
INFERENCE FROM A TIME SERIES

- $\epsilon \gg 1 \Rightarrow$ strong disorder / low temperature phase
- $\epsilon \ll 1 \Rightarrow$ weak disorder/ high temperature phase





How to estimate whether reconstruction is possible?

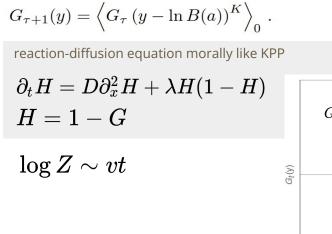


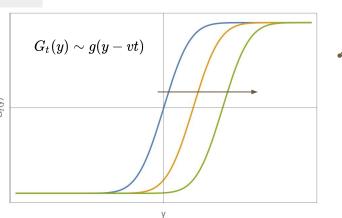
unusual replica limit compared to standard disordered systems

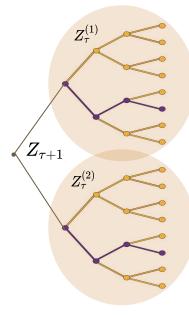
Few words about directed polymer on the tree

$$Z:=\sum_{x\in ext{path}}Z(x)=\sum_{x\in ext{path}}\prod_{j\in x}rac{P_1(a_j)}{P_0(a_j)}=\sum_{x\in ext{path}}\prod_{j\in x}B(a_j)$$

Derrida&Spohn: $G_t(y) = \langle e^{-e^{-y}Z_t}
angle_0 +$ recursive relation







Shannon entropy of the estimated distribution

Shannon entropy: $S[p] = -\int dx \; p(x,t) \log p(x,t) \quad \Leftarrow \quad F[p] := -p \log p$

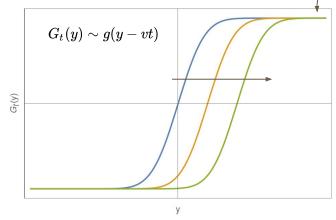
$$egin{aligned} &\langle S[p]
angle = \int dy e^y (G_t(y) - G_0(y)) - & \ G_t(y) \stackrel{y o \infty}{\sim} 1 - e^{-y} + O(e^{-2y}) \end{aligned}$$

Morally " $Z \log Z$ " instead of " $\log Z$ " behavior of entropy controlled by faster-than-front

Regime of atypical events:

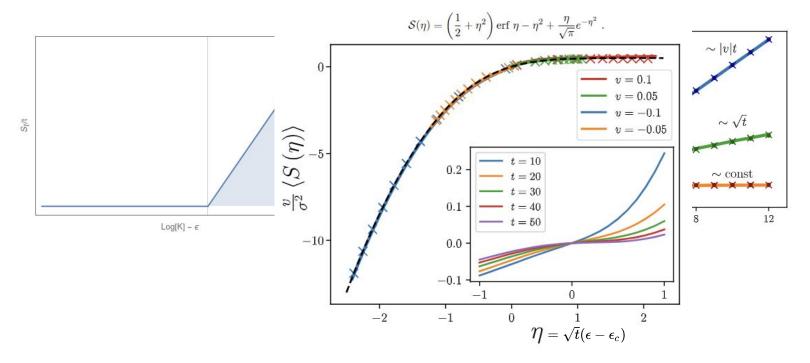
 $u_t(y)=e^y(1-G_t(y))$

KPP reduces to diffusion in the presence of a hard wall



Phase transition in the rate of entropy production

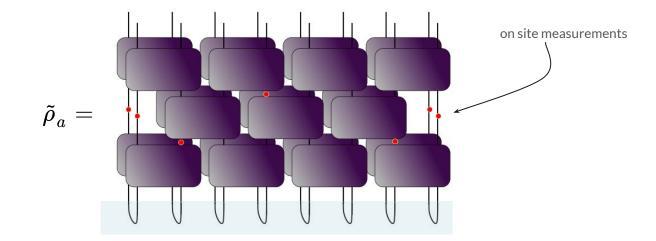
Shannon entropy: $S[p] = -\int dx \; p(x,t) \log p(x,t) \quad \Leftarrow \quad F[p] := -p \log p$



back to quantum $\hbar \neq 0$

FROM BAYES TO BORN'S RULE

 $p(x|a) \longrightarrow
ho_a \;, \quad$ density matrix



tunable parameter: probability of measuring each site pNormalisation + Born's rule: $\rho_a = \frac{\tilde{\rho}_a}{\text{Tr}[\tilde{\rho}_a]}$ with probability $\text{Tr}[\tilde{\rho}_a]$

REPLICA TRICK

Normalisation + Born's rule: $\rho_a = \frac{\tilde{\rho}_a}{\text{Tr}[\tilde{\rho}_a]}$ with probability $\text{Tr}[\tilde{\rho}_a]$

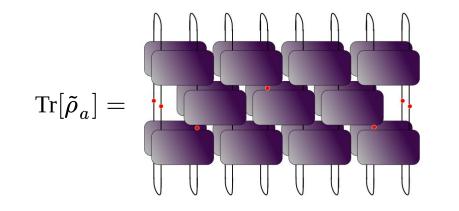
$$\langle F[\rho_{\mathbf{a}}]
angle_{\mathrm{meas}} = \left\langle F\Big[rac{ ilde{
ho}_{\mathbf{a}}}{\mathrm{Tr}[ilde{
ho}_{\mathbf{a}}]}\Big] \mathrm{Tr}[ilde{
ho}_{\mathbf{a}}]
ight
angle_{\mathrm{unbiased}}$$

Computation of the purity

e.g.
$$F[
ho] = \operatorname{Tr}[
ho^2]$$

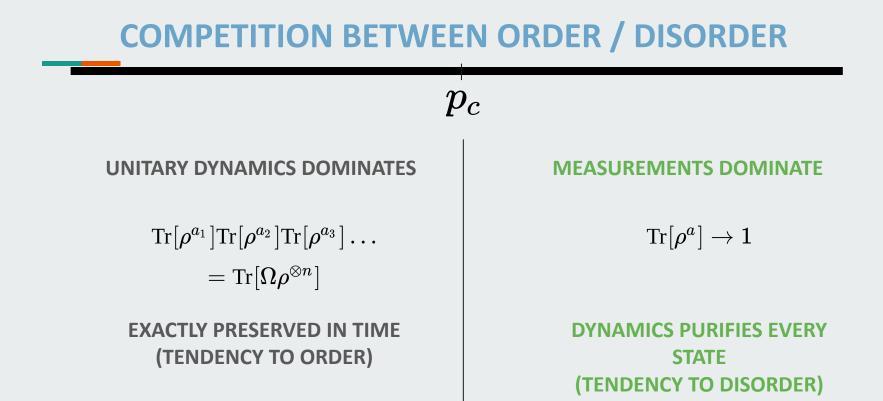
 $\langle \operatorname{Tr}[
ho_{\mathbf{a}}^2] \rangle_{\mathrm{meas}} = \lim_{N \to 1} \langle \operatorname{Tr}[\tilde{
ho}_{\mathbf{a}}^2] \operatorname{Tr}[\tilde{
ho}_{\mathbf{a}}]^{N-2} \rangle_{\mathrm{unbiased}}$

DIAGRAMS AND PERMUTATIONS

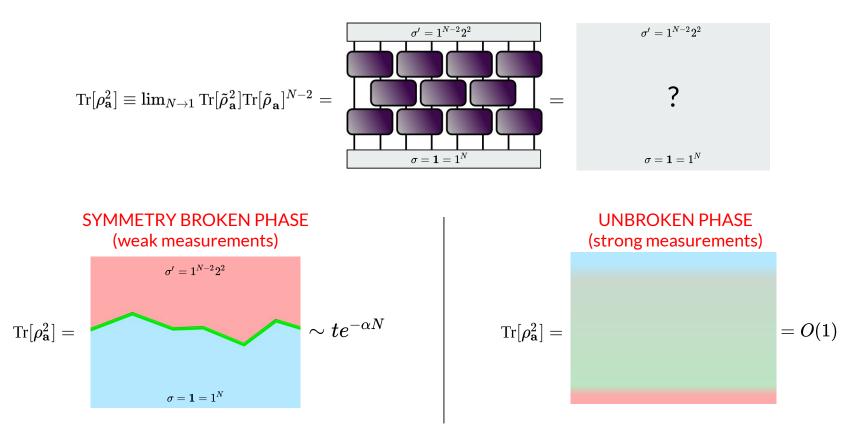


$${\rm Tr}[\tilde{\rho}_a^2] =$$

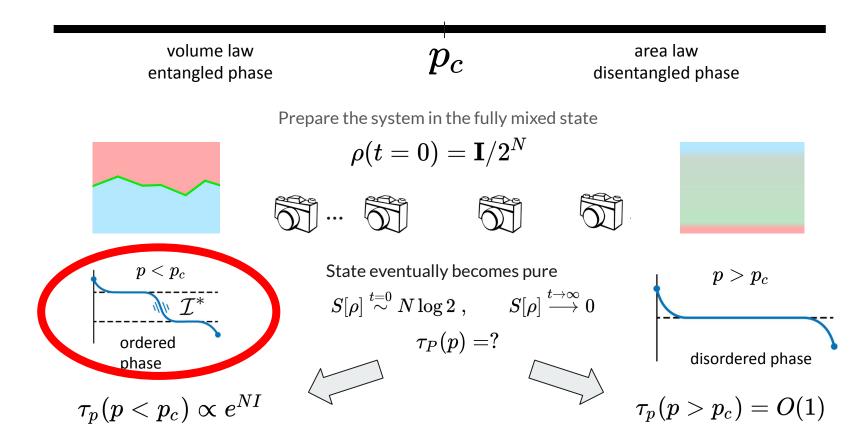
$$\lim_{N \to 1} \mathrm{Tr}[\tilde{\rho}_{\mathbf{a}}^{2}] \mathrm{Tr}[\tilde{\rho}_{\mathbf{a}}]^{N-2} = \overbrace{\sigma = \mathbf{1} = 1^{N}}^{\sigma' = 1^{N-2}2^{2}}$$



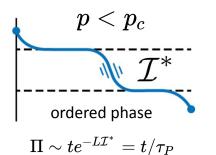
PURIFICATION TIME AND SYMMETRY BREAKING



PURIFICATION TIME



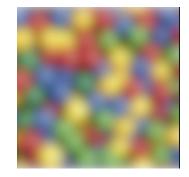
SLOW PURIFICATION \rightarrow RMT



Purification is so slow that we can treat the system as a single dot

$$t/ au_P = x$$

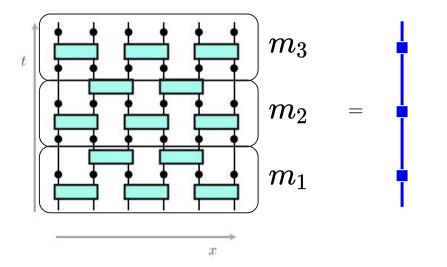
[...] there must come a point where such analyses of individuals level cannot usefully go [...] F. Dyson



remove spatial structure: effective model in 0+1 dimension

ADL, C Liu, A Nahum, T Zhou - arXiv:2312.17744, 2023 F Gerbino, P Le Doussal, G Giachetti, ADL - Quantum Reports, 2024 see also VB Bulchandani, SL Sondhi, JT Chalker, JSTAT 191 (5), 55

SLOW PURIFICATION \rightarrow RMT



$$egin{aligned} ilde{
ho}_{\mathbf{a}} &= m_T \dots m_2 m_1 m_1^\dagger m_2^\dagger \dots m_T^\dagger \ m_i &= egin{pmatrix} x_{11} & x_{12} & \dots \ dots & \ddots & \end{pmatrix} \sim 2^L imes 2^L \end{aligned}$$

Gaussian matrices for simplicity – **Ginibre ensemble** (Not too important as long as rotational invariant)

Continuous time version also possible (see F Gerbino, P Le Doussal, G Giachetti, ADL - Quantum Reports, 2024)

REPHRASING OF THE PROBLEM WITHIN RMT

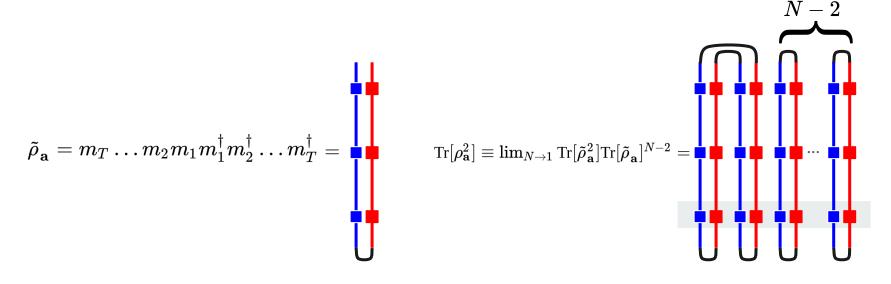
$$ilde{
ho}_{\mathbf{a}}=m_T\dots m_2m_1m_1^\dagger m_2^\dagger\dots m_T^\dagger=MM^\dagger \ , \qquad M=m_T\dots m_2m_1$$

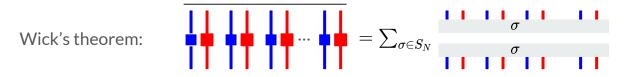
- distribution of singular values of a product of many random matrices
- scaling limit where: matrices are large and many matrices are multiplied

$$\mathcal{N} o \infty, T o \infty \ , \quad T/\mathcal{N} = T/ au_P = x$$
 scaling variable

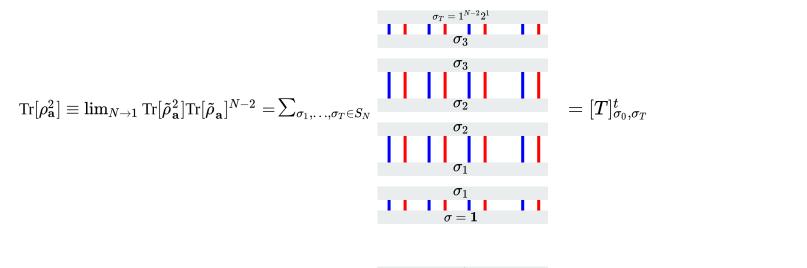
see also D.-Z. Liu, D. Wang, and Y. Wang, arxiv:1810.00433 G. Akemann, Z. Burda, and M. Kieburg, PRE 102, 052134 (2020).

APPROACH VIA REPLICAS



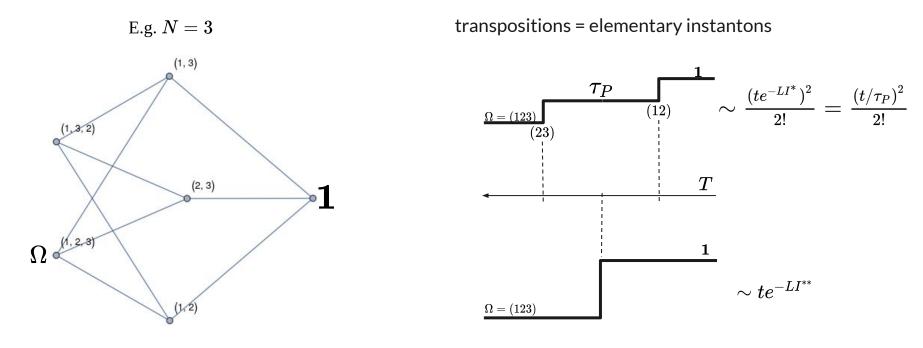


COUNTING PATHS IN THE PERMUTATION GROUP



$$T_{\sigma,\sigma'} = \left[\begin{array}{c|c} \sigma & \sigma \\ \sigma & \sigma \end{array} \right] = ext{transfer matrix} \propto 2^{-Ld(\sigma,\sigma')} = au_P^{-d(\sigma,\sigma')}$$

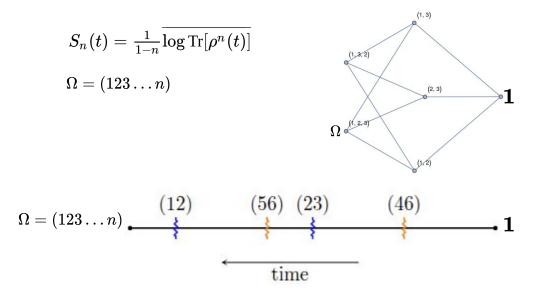
ORIGIN OF UNIVERSALITY



$$(T^t) = (1+A/ au_P)^t \sim e^{xA} \;, \qquad A_{\sigma,\sigma'} = egin{cases} 1 & d(\sigma,\sigma') = 1 \ 0 & ext{otherwise} \end{cases} \qquad \qquad x = t/ au_P$$

1

EXAMPLE: Renyi's entropies



number of decomposition of a cycle as product of transpositions: n^{n-2}

$$egin{aligned} S_n(t) &= -\lnrac{t}{ au_P} - rac{1}{1-n} ext{log} \Big[rac{n^{n-2}}{(n-1)!} \Big] + \Delta_n(t) \ S_1(t) &:= - ext{Tr}[
ho(t) \ln
ho(t)] = -\lnrac{t}{ au_P} + 1 - \gamma + \Delta_1(t) \end{aligned}$$

EXAMPLE: Order by order replica limit

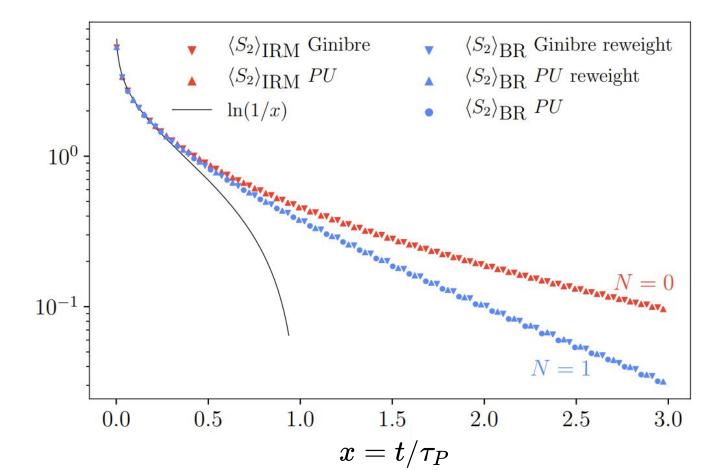
$$egin{aligned} & ilde{
ho} &= M^{\dagger}M \;, & M &= m_1m_2\dots m_T \ & ext{IRM}: & \overline{S_2} &= -\ln x + rac{4}{3}x^2 - rac{637}{90}x^4 + O(x^6), \; N o 0 \ & ext{BR}: & \overline{S_2} &= -\ln x + x^2 - rac{949}{180}x^4 + O(x^6), \; \; N o 1 \end{aligned}$$

IRM:
$$\overline{S_1} = -\ln x + 1 - \gamma + \frac{11}{24}x^2 - \frac{1739}{2880}x^4 + O(x^6), \quad N \to 0$$

BR: $\overline{S_1} = -\ln x + 1 - \gamma + \frac{5}{24}x^2 - \frac{239}{2880}x^4 + O(x^6) \quad N \to 1$

UNIVERSAL FUNCTIONS DESCRIBING PURIFICATION $\mathcal{N} o\infty, T o\infty, \quad T/\mathcal{N}=T/ au_P=x$

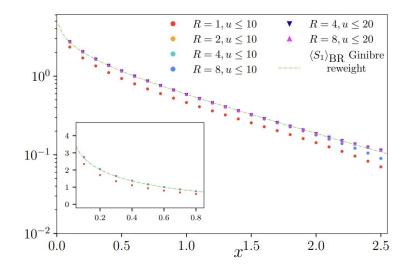
NUMERICAL COLLAPSE – S₂



VON NEUMANN ENTROPY (RESUMMATION IN TERMS OF PLANCHEREL MEASURE)

$$\overline{S_1} = - ext{tr} [ilde{
ho} \log ilde{
ho}] ext{tr} [ilde{
ho}]$$

$$\lim_{R \to \infty} G_R(u) = G(u) \qquad \qquad G_R(u) = \det(I_{j,k})_{j,k=0}^{R-1},$$
$$\overline{S_1}_{BR} = -\ln\left[2\sinh\frac{x}{2}\right] + 1 - \gamma + \int_0^\infty du \frac{G(u) - e^{-u}}{u^2},$$



CONCLUSIONS

MIPT can be seen as **inference for time series – mapping to directed polymer**

Volume law phase of MIPTs can be studied using RMT

The long-time dynamics shows universal behavior

Scaling functions can be computed counting paths in the permutation group

Universality is relevant in any context involving multiplication of RMs