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OUTLINE

(d Recap on thermalisation in many-body quantum systems

d Entanglement production:

O membrane picture
O random unitary circuits

(J Monitored systems and measurement-induced phase transition

[ Classically monitored systems

O mapping to disordered systems
O directed polymer solution

(1 Back to quantum
O purification dynamics
O random matrices

o universality



Out-of-equilibrium dynamics
of isolated many-body quantum systems

Fundamental questions

e How does a many-body system thermalise?
e Universality behind thermalization?

e Can thermalization be avoided?

e New out-of-equilibrium phases?
Thermalization = loss of
memory of initial conditions

Experimental progress
cold atoms, trapped ions, etc. — fine-tuned interaction in isolated many-body quantum systems




Sudden quantum quenches in homogeneous systems

|. Initial homogeneous high-energy state
CFT,

2. Evolution with homogeneous H Calabrese, Cardy, 06

3. Local relaxation to a steady state

Emergent statistical description? Fix by conserved
A Thermal quantities
(O(z,1)) Q= [dzg(z), [H,O =0
(¥(®)]4(x)[4(2)) = (¥(0)|4(x)[+(0))
Not thermal :
(GGE) enforce conservation
of charges
p X e Ej B;9Q;
> Rigol et al ‘07




Role of Locality

|.  Only way to observe relaxation is to use a smaller class of observables

2. A many-body system is extended in space

3. Can the system behave as its own “bath™?

Local observables (with support only in A) can relax:

(0(2))oo = limy 00 {O(2, 1)) (&)




Thermalisation and entanglement

e Entanglement is a distinctive and unique feature of quantum mechanics

9) = (111 = [11))

e [t implies information is partially lost when a portion of the system is discarded

p=1b)l,  pa=Trglp], Tr[p%] <1

® Thermalization must produce a lot of entanglement




WHAT HAS BEEN DONE

Standard methods do not apply: far from the groundstate, no small parameter

o 1T

Numerical methods Integrable models

- Bethe-Ansatz, free theories

- Restrictions: fine-tuned,
non-ergodic dynamics

- standard ETH does not hold

-  DMRG, exact diagonalization
- Restrictions: small times,
small sizes



RANDOM CIRCUITS

Hilb f i g
libert space o _
a single g-dit ” o UO%B;%(S
a g
gate acting on two sites

Recipe for building random circuits
® consider many g-dits

® choose a geometry to your liking
e make the g-dits interact with random gates (Haar distributed)

X

time

(><°

Skinner et al. PRX 7, 031016 (2017)



ENTANGLEMENT GROWTH & MINIMAL CUT

Renyi entropies: Sy, (z) = +—log(Tr[p}])
Von Neumann: Syy () = lim,,_,1 Sy, (z) = —Tr[p, log(pz)]

Hartley entropy: Sy (w) Number of non-vanishing eigenvalues

X

So(x) o< length of the minimal cut ~ ¢

Skinner et al. PRX 7, 031016 (2017)

time

P

In general, entanglement entropies grow linearly with t



Random Unitary circuits

e Consider local degrees of freedom (e.g. spins)
e Evolve with local interactions

[¥(t)) = W|¥(0)) =

e Each gateisindependently chosen as a (small) random

! o
unitary matrix 7 5
m — Ua,ﬁ;%5
a B

e No conserved quantity is present (not even the energy!)
e Diagrammatic notation is advantageous




Example: expressing the purity
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Classical partition function where local degrees of freedom range over permutations



Coarse-grained / membrane picture
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T Zhou, A Nahum - PRX, 2020, A Nahum et al Phys. Rev. X 7,

(P) ~ e %2 | free energy of a membrane extended in time



Beyond unitary dynamics:
including measurements

UNITARY



UNITARY DYNAMICS + MEASUREMENTS
¢

-o——e |-o-

¢
¢

el e el e
e el e 1o

? with probability p

# perform a projective measurement of .S,

Baaly sme sl =S
—lo—eol lo——ol o

|Wo) — |¥;(a = positions + outcomes of measurements))

what is the entanglement of the resulting quantum state?



FROM MINIMAL CUT TO DIRECTED PERCOLATION

BONDS WHERE MEASUREMENTS OCCUR HAVE NO “COST” FOR THE PATH




COARSE-GRAINED PICTURE

P = Pc
g g
s " b =< '4
¢ o7 9%
> 9 & ‘I

|

B. Skinner et al., PRX, 9 (2019)



MEASUREMENT-INDUCED PHASE TRANSITIONS
(MIPT)

—

volume law p area law
entangled phase C disentangled phase

® Hartley entropy S, / g—: MIPT = classical directed percolation, NOT TRUE IN
GENERAL

e Essentially impossible to observe (post-selection)
e Simulatable vs non-simulatable phase

e Hard to study analytically in general
o it requires strong interactions (absent in non-interacting theories)

o intrinsically stochastic



Spinoff: Explore the classical
analogous of MIPT

h—0

QUANTUM CLASSICAL



Classical Markov chain

e.g. random walk

system following stochastic dynamics

= o MIN/W
v\/ M

an observer tries to locate x

Fokker-Planck — p(z)

uncertainty grows with time

Shannon entropy: S[p| = — [ dz p(z,t) log p(z, )



Example: directed random walk on a tree

x* = arandom path on the tree

Motivation
e  solvability
e interpretation as Lyapunov exponent of
chaotic system

arXiv: 2501.00547
see also: SWP Kim, A Lamacraft (2404.07263)




Mitigate uncertainty with measurements

e an observer performs measurements on
each state at each time

Py(aj;) jisempty
. ~ Prob(a;|z) = I
i o (aj |w) { Py (a,j) j is full

)

Pla]

L

€ = signal to noise ratio




Mitigate uncertainty with measurements

5 P

e an observer performs measurements on -
each state at each time Voo PO
Py(a)) £t PO

a;) 7Jisempty

a; ~ Prob(a;|x) = 0% N

I ( Jl ) { P, (a,j) j is full — PO
e USe measurements to reconstruct the

distribution (Bayes's theorem) ﬁ Pl
e P
p(zla) o Prob(alz) - 70
>, Prob(alz’) 2 By

P(a) = P(a|z*) ' T



Mapping to directed polymer on the Cayley tree

e disorder on each node chosen according
a; ~ Py(a;)

e Boltzmann weight of a given path

. Pi(a;)
ze = |ljea Py(ay)

€ > 1 = strong disorder / low temperature phase

€ < 1 = weak disorder/ high temperature phase




Mapping to directed polymer on the Cayley tree

INFERENCE FROM A TIME SERIES

€ > 1 = strong disorder / low temperature phase

€ < 1 = weak disorder/ high temperature phase

! € 'e ®
Py(a 1 (a) . :n
} >
L/ i3




How to estimate whether reconstruction is possible?

p(z) = inferred probability = Prob(z|a)

S
>, p(x) = 1 <= normalisation / \\. N P, 0
narrow distribution implies measurements are effective

reference trajectory

(Flp@))) = (F| 5 | (2 2(),
e.g. participation ratio(}__ p(z)") = (3, 2(z)" (>, 2(z))' ™) T~ By

unusual replica limit compared to standard disordered systems




Few words about directed polymer on the tree

P]_ (aJ

Z = Zprath Z(:L’) = Emepath HJE.’B Py(a = EzEPath Hje;c B(a’j)
Derrida&Spohn: G (y) = (e7¢ “%t)y + recursive relation
Gria(y) = (G- (y =l B@)")

reaction-diffusion equation morally like KPP

8;H = DO2H + \H(1 — H)

H=1-G Gi(y) ~ gy — vt) ///
/]

log Z ~ vt

Gr(y)




Shannon entropy of the estimated distribution

Shannon entropy: S[p| = — [dz p(z,t)log p(z,t)

(S[pl) = [ dye?(G:(y) — Go(y))

Gi(y) "~°1— eV + O(e™)

< Flp|:= —plogp

Morally "Z log Z" instead of "log Z"

behavior of entropy controlled by faster-than-front

Regime of atypical events:

ut(y) = e/ (1 — Gi(y))

KPP reduces to diffusion in the presence of a hard
wall

Gi(y) ~ g(y — vt)

e




Phase transition in the rate of entropy production

Shannon entropy: S[p| = — [dz p(z,t)logp(z,t) <« Flp]:=

1 2
S(n) = ( +n) erf ) —n? +—%€"

—plogp

~ |vft

Log[K] - €

N




back to quantum
K0



FROM BAYES TO BORN’S RULE

p(z|la) — p, , density matrix

on site measurements

tunable parameter: probability of measuring each site p
Pa

Normalisation + Born's rule: p, = —
rlp,

with probability Tr[p,]



REPLICA TRICK

Normalisation + Born's rule: p, = TrT:;‘ with probability Tr[5,,|

a

(Flpalhmess = (F | 72| Tel5,

] > unbiased

Computation of the purity

e.g. Flp] = Tr[o?]
(Tr[03]) meas = limp_s1 (Tr[B2]Tr[Ba ]V 2) iicea

again unusual replica limit



]N—Z —

limuy 1 Trlp2] e[,




COMPETITION BETWEEN ORDER / DISORDER
. ]

Pc
UNITARY DYNAMICS DOMINATES MEASUREMENTS DOMINATE
Tr[p™ | Tr[p® | Tr[p®] . .. Tr[p*] — 1
= Tr[Qp®"]
EXACTLY PRESERVED IN TIME DYNAMICS PURIFIES EVERY
(TENDENCY TO ORDER) STATE
(TENDENCY TO DISORDER)




o =1V22?

Tr[pa] = limy 1 Tr[p2]Tr[p, ]V =

SYMMETRY BROKEN PHASE
(weak measurements)

o =1N"22?

o =1V?22?

UNBROKEN PHASE
(strong measurements)



volume law p area law
entangled phase C disentangled phase

Prepare the system in the fully mixed state

p(t=0) =1/2%
ey E ? E @ ﬁ
State eventually becomes pure D > P
Slp) 'Y Nlog2,  S[p] =3 0 \ i}

_9 \
: (p) ,: disordered phase

»(@>p.) = 0(1)




SLOW PURIFICATION — RMT

Purification is so slow that we can treat the
system as a single dot

I~ te 12" =t/1p

t/’Tp =T

S

[...] there must come a point where
such analyses of individuals level
cannot usefully go [...] F. Dyson

remove spatial
structure:
effective model in
0+1 dimension

ADL, C Liu, A Nahum, T Zhou - arXiv:2312.17744, 2023
F Gerbino, P Le Doussal, G Giachetti, ADL - Quantum Reports, 2024
see also VB Bulchandani, SL Sondhi, JT Chalker, JSTAT 191 (5), 55



SLOW PURIFICATION — RMT
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Gaussian matrices for simplicity - Ginibre ensemble
(Not too important as long as rotational invariant)

Continuous time version also possible (see F Gerbino, P Le Doussal, G Giachetti, ADL - Quantum Reports, 2024)



REPHRASING OF THE PROBLEM WITHIN RMT

ﬁa=mT...m2m1'mJ{m;...m;,=MMT, M=mgp...momy

e distribution of singular values of a product of many random matrices
e scaling limit where: matrices are large and many matrices are multiplied

N =00, T 500, T/IN=T/p=2

scaling variable

see also D-Z. Liu, D. Wang, and Y. Wang, arxiv:1810.00433
G. Akemann, Z. Burda, and M. Kieburg, PRE 102,052134 (2020).



APPROACH VIA REPLICAS

N —2
*
| M) N O
I* I‘ EN BN =N
Pa :mT...m2m1mIm;...m; = HN Tr[p2] = limy 1 Tr[p2]Tr[p, ]V > =m HN HN - AN
(] | EN BN BN NN
- J U U -

Wick’s theorem: l+ ++ ++ ++ = ZUESN Z
| AN EEE



COUNTING PATHS IN THE PERMUTATION GROUP

orp =1V 22!

I I I B 11
o3

g3
02
02
o1

o1
11 11 11 11
oc=1

Tr[p?,] = limy 1 Tr[ﬁg]Tr[ﬁa]N_z = Zal,---,ﬂTESN - [T]ZO,UT

o
_ ) _ ) —-d
Ta,a’ = | | | | | | | | — transfer matrix oc 2~ Ld(@:7) =Tp (:7")
o



ORIGIN OF UNIVERSALITY

transpositions = elementary instantons

1
TP _LI*\2 2
s O e S
o=(s | el : 51 o1
) T
1
Q= (123)

0 otherwise

(T) = (1+ Afrp)t ~ &, AU,OJ:{l d(o,0') =1 z—t/rp



EXAMPLE: Renyi’s entropies

Sn(t) = 15, log Tr[p (t)]

Q= (123...n)
o (123, m (1§2) (556) (2§3) (4§6) .
time
number of decomposition of a cycle as product of transpositions: n” 2
Sn(t) = —In Lt — L 1og[ (g'j)!] + A1)

S1(t) := —Tr[p(t) Inp(t)] = —In % +1 -5+ Aq(?)



EXAMPLE: Order by order replica limit

ﬁIMTM, M:mlmg...mT
— 4 637
IRM : Szz—lnx+§x2—mx4+0(x6), N —0
BR.: S_2=—1n$+$2—%9)-x4+0(x6)7 N —1
. B i, Pl LS g 6
IRM: S =-Inz+1-y+ 2" — ooz +0(%, N—0
. T . 32_239 4 6
BR: S1=-lnz+1-v+ 52" —ooma’ +0(2°) N —1

UNIVERSAL FUNCTIONS DESCRIBING PURIFICATION
N =000, T— 00, TIN=T/p=2



NUMERICAL COLLAPSE -5,

100;

10_1?

v

A

<SQ>IRM Ginibre -
<S2>IRM P

A

(Sa) BR Ginibre reweight

(S2)gR PU reweight




VON NEUMANN ENTROPY

(RESUMMATION IN TERMS OF PLANCHEREL MEASURE)

Rlim Gr(u) = G(u)

8y = —t[plog plir[p]

Gr(u) = det(I;x) 52,

o0 —u
—_— T G(u) —e
S1gr=—-In [2smh —] +1—-9+ duL,
’ 2 Jo u?
e R=1u<l0 Y R=4u<20
e R=2u<10 A R=8u<20
¢ R=4u<10 (S1)gR Ginibre
100_ ot e R=8u<10 reweight
';:‘b'\"l~ A
44 . : :'L i
10714 31 el 5
1,
1.4
- 0— T T T T
0.2 0.4 0.6 0.8
102 T T T . .
0.0 0.5 1.0 1.5 2.0 2.5



CONCLUSIONS

D MIPT can be seen as inference for time series - mapping to directed polymer

D Volume law phase of MIPTs can be studied using RMT
D The long-time dynamics shows universal behavior
D Scaling functions can be computed counting paths in the permutation group

D Universality is relevant in any context involving multiplication of RMs



