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Transport

dE; : :
E = ZEx = Jx—1x — Jxx+1
dt
=
extensive system conservation law

E.g. E = total energy
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Tq {mommvwvmmomw{ T,

J = (xxt+1(t))nESs Vi, x

Question : How does J depend on L?



Diffusive Ohm’s Law

Resistors in series, i.i.d. (uniform distribution)
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Sub-diffusive Ohm’ Law

Resistors, i.i.d. with  (Ry) = 400
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Localization

E.g.: Classical Disordered Harmonic Chain (Free Model):
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1
H(p,q) = 5 (i +wiq)) +8) (qer1 — 4x)
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I'(z)
= Numerics:
1.6 , W. De Roeck, A. Dhar, F.

Huveneers, M. Schutz, JSP 2017

1.2 = Mathematical:
) Ducatez, ECP 2019
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These 3 Behaviors in a Single Model!
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classical disordered Ising chain flip-flop
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I. Gornyi, A. Mirlin, D. Polyakov, PRL 2005; D. Basko, I. Aleiner, B. Althsuler, AdP 2006;
V. Oganesyan, D.A. Huse, PRB 2007, ...



MBL / Thermal

MBL/ETH is an out-of-equilibrium transition

Partitioned

Many-body

localization

A. Chandran/Boston University; P. Crowley/Harvard University; APS/Carin Cain

From A. Chandran and P. Crowley (2024), Physics 17



Thermal Phase

Eigenstate thermalization hypothesis (ETH):
(E|IOE) = (O)r + O(e™") (O local)

Physical picture:
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Localized Phase (MBL)

ETH is broken:
(E|O|E) # (O)r (O local)

Temperatures do not equilibrate, no transport:
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* Closed quantum system that doesn’t thermalize on its own:
It remembers its initial state forever.

* Robust: “arbitrary” perturbations, emergent integrability.



MBL.: Theoretical Description

Anderson point, A = 0, eigenstates are product state:

E) ~ [T141 ... 1)

(Too) naive picture for MBL, A > 0. Localization in Fock space:
Eigenstates are small perturbation of product states.

2

Anderson localization L-dimensional
hypercube is not quite correct




Local Integrals of Motion

Here is what we can generalize from A=0 (Anderson point):
* L integrals of motion: Z1,...,4p,

| Z2, Zy] = 0, |H,Z,] = 0

* The Hamiltonian writes as a function of them:

H = Y hoZo + JZ2 7041
xZr

* They are local:
|Z,,0] = 0 if z ¢ supp(O)



Local Integrals of Motion

Similar picture expected to hold for 0 < A < A¢ :

e L integrals of motion: Z,,...,Z
Z;,Z,] = 0, |H,Z,] = 0

 The Hamiltonian writes as a function of them:

* Quasi-locality:

I[Z,,0]| < Ce™™¢, r = dist(x,supp(O))

M. Serbyn, Z. Papic, D. Abanin, PRL 2013
D. Huse, R. Nandkishore, V. Oganesyan, PRB 2014



Thermal Phase: Absence of Diffusion

Rare regions, aka Griffiths regions, with anomalously large
disorder create bottlenecks and slow down transport

Thermal material:

/

\ these régions would be localized if isolated

K. Agarwal, S. Gopalakrishnan, M. Knap, M. Miller, E. Demler, PRL 2015,
D. Luitz, N. Laflorencie, F. Alet, PRB 2016



Thermal Phase: Absence of Diffusion

L :total length

'

. length of the biggest resistance
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¢ = KloglL
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J e e TR

K/ > 1 near the transition



Need for Math: MBL is debated

Avalanches: The MBL/ETH transition point could be located
at much higher disorder values than initially thought.
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From A. Morningstar, L. Colmenarez, R R e et
1e crossing point drifts substantially from around

V. Khemar"’ D.J. LL"tZ’ D.A. Huse’ PRB 2022 W* ~ 8 for the smallest system to W* > 20 for the largest

available system size.

From D. Sels, PRB 2022

See also B. Krajewski, L. Vidmar, J. Bonca, M. Mierzejewski, PRL 2022



Couple the chain with baths at the boundaries:

gD
Hi ' Hr

G,
J

Hiot =Hp)+VB1® X1+ Hg, + V@ XL + HL

J = i[Hor, Hi] = i[H,, H]



Theorem: Absence of Diffusion

Long time average of the current for arbitrary large baths:

1 75
(Jr) := limsupsupsup — f dt Tr(pJ(t))
T—oo B p / 0

f \ Supremum over all baths
Long time average

Theorem (W. De Roeck, L. Giacomin, F. H., O. Prosniak)
If A > 0 is small enough,

lim E (L) = 0

Remarks: 1. In particular, there is no diffusion in the NESS, if the NESS sets in.
2. Valid for a whole class of Hamiltonians (robustness).
3. First claimed by Gornyi, Mirlin, Polyakov (’05), Basko, Aleinner, Altshuler ('06)




The Mathematics of MBL

o Mathematical Approach pioneered by J. Imbrie (2016)
e Diagonalization needs to preserve locality:
H = U'DU
If O is a local operator, then

UtoUu = Y 05, |04 <ce T O].
I

@ This goes through a renormalization procedure, cf. KAM,
Schrieffer-Wollft:

. (k) (1)
U = lime? ... eA

k—o0



Constructing the First Rotation

Define A1) = \A to diagonalize H = E + AV in the 1% order in \:

B[AA’]H
= H+ \[A, H]+ O0(\?)

= E+ AV +)\A,E] + 0%
\\\\N*wwﬁ,//

Cancel this!

e—AAIJeAA

We can now define A:

V= Xy A= ZX‘”A}E:B
v v e ¥ Energy

denominators

AE, =2Z,(hy + JZy_ 1+ JZy41)



The Role of the Disorder

For typical values of the disorder, denominators are large:

AE, =2Zy(hy + JZy 1+ JZ311)

They become nearly O for atypical values: Resonances

Controlling resonances is a challenging aspect:

Hilbert space dimension: 2L
Number of independent variables: L

Non-perturbative control needed to prove MBL.: cf. the
Limited Level Attraction Hypothesis used by J. Imbrie.

Proving absence of normal diffusion requires less...



MBL Away from Resonances

Absence of diffusion requires MBL on atypical stretches:

log L

4——>

-« L >

Theorem (W. De Roeck, L. Giacomin, F. H., O. Prosniak).
On a stretch of length £, there is MBL with probability

Thus, we identify a non-resonant set in disorder space and
prove MBL on this set



Convergence of the Expansion

Firststep: VO =3 X, A®=3 4

HO = E4+ v

=
[
5

AE,’
g1 — AMAD ] g(0) o E + X2[AN v0)
=: E+ Ay

The scheme is naively quadratic



Convergence of the Expansion

Diagrammatic expansion for V(7).
v — Zv(l)(g)

JD\:) @%%'
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Only such diagrams appear

e St Other diagrams are generated in general
within our approximation



Convergence of the Expansion
Atstep k. VW = 3 V®(g), AFD = 5 Alk+)(g)
H(k) = F + )\kV(k)

I

A¥D(g) = VI(g9) 1+
g

HEY ~ B4 22140 vO] = B4+ A\ VEHD
The naive flow of the coupling constant is quadratic:

M1 = M = ... =\



Convergence of the Expansion

We can construct a diagrammatic expansion:

1748),
V2 e A()
(0 4(1) (0 A1)

Only dyadic diagrams are generated
in the approximation above

VO AQ) A1) 4Q)

In general, other types of diagrams
can be generated



Convergence of the Expansion

We still have to impose non-resonance condition:
At step k, terms may involve upto £, = 2F spins

Resonances involve 2°* configurations of these spins:

>
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AF can typically get

as small as 2% = 2—2"
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We set a resonance threshold:

AFE > g, Ef = gtk



Convergence of the Expansion

Flow of the effective coupling constant:

X
Akl = Ap—
Ek

This is solved explicitly:

- 1
logdpr; = —2F1log =

1
k+1)2%1og =
A+(+) og

Even for A << g, the second term dominates for large k:
The expansion seems only asymptotic!

Convergence is non-trivial even away from resonances



Fixing the Convergence

~ollowing a strategy already present in

1. Crowded diagrams: They allow for a

mbrie’s work:

arger resonance

threshold and can be estimated inductively.

2. Non-crowded diagrams: There is (almost) one disorder
variable for each denominator, and they can be
estimated through a non-inductive, probabilistic bound:

Plas (L ) < Sl | 1
~ ) h |AE1 e AE2n|a

5 (CE)OAQn

Markov bound with fractional moment: O<a<1



Conclusion

We are developing the mathematical study of MBL.

We establish the absence of diffusion at the
mathematical level of rigor for generic 1d disordered
quantum spin chains.

Our work takes inspiration from the approach
pioneered by J. Imbrie.

Our work provides a way to interpret some numerical
studies that questioned the existence of MBL.



