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Michel Talagrand

Michel Talagrand
Abel prize 2024

�for his groundbreaking contributions to probability theory and

functional analysis, with outstanding applications in

mathematical physics and statistics.�
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Early years

Born in 1952.
Grows up and does undergrad (incl.
�agrégation�) in Lyon.
Enters CNRS in 1974.

PhD thesis under Gustave Choquet,
defended in 1977, in measure theory,
topology and geometry of Banach spaces.

�A problem-solving machine� (G. Choquet).

Uniform laws of large numbers

sup
f ∈F
∣1
n

n

∑
k=1

f (Xk) −E[f (X1)]∣→ 0 ?
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Suprema of Gaussian processes

Gilles Pisier joins the group in 1983 and
suggests Talagrand to study suprema of
Gaussian processes.

(Xt)t∈T a centered Gaussian process. When do we have

E sup
t∈T

Xt < +∞ ?

View T as an abstract metric space via

d(s, t) ∶= E[(Xt −Xs)2]
1
2 .

Andrey Kolmogorov, Richard Dudley (entropy-number upper
bound), Volodya Sudakov (lower bound). . .
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Dudley's upper bound

Let N (T ,d , ε) be the minimal number of balls of radius ε
needed to cover T .

Theorem (Richard Dudley)

There exists an absolute constant C < +∞ such that

E sup
t∈T

Xt ⩽ C ∫
+∞

0

√
logN (T ,d , ε)dε.

Suppose T �nite, and for each n ∈ Z, let Tn be a 2−n-net of T
of minimal size. Denote by πn(t) a point of Tn that is closest
to t ∈ T . We have

X (t) −X (t0) =
+∞

∑
n=−∞

(X (πn(t)) −X (πn−1(t))),

and

E sup
t∈T
(X (πn(t)) −X (πn−1(t))) ⩽ C2−n

√
logN (T ,d ,2−n).
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Suprema of Gaussian processes

Xavier Fernique develops more re�ned
upper bound via majorizing measures
(Saint-Flour 1974).

Talagrand shows matching lower bound
(1987).
Later: �Majorizing measures without
measures� (2001): emphasis on the generic
chaining.
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Suprema of Gaussian processes

γ2(T ,d) ∶= inf sup
t∈T

+∞

∑
n=0

2n/2d(t,Tn),

where inf is over all (Tn)n⩾0, Tn ↗ T such that ∣Tn∣ ⩽ 22
n
.

Theorem (Michel Talagrand)

C−1γ2(T ,d) ⩽ E sup
t∈T

Xt ⩽ Cγ2(T ,d).

Talagrand conjectures a generalization to Bernoulli processes

∑+∞n=0 tnXn, for (tn) ∈ T ⊆ ℓ2.

Problem solved by Witold Bednorz and
Rafal Lataªa (2014).
Generalization to empirical processes.
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Concentration of measure

Concentration of measure and isoperimetry.
Vitali Milman works on this and convinces
Talagrand that this is an important idea.

Concentration of measure in product
spaces ↝ Talagrand's convex concentration
inequality (1995).
� It is surely my most popular result, and

the one most people will learn.�
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Some consequences of Talagrand's convex

concentration inequality

For every set A ⊆ Rn and t ⩾ 0, we write

At ∶= {x ∈ Rn ∣ dist(x ,A) ⩽ t}.

Theorem (Michel Talagrand)

There exists c > 0 such that if A ⊆ Rn is convex and X
uniformly distributed over {−1,1}n, then

P[X ∈ A]P[X ∉ At] ⩽ exp(−ct2).

For possibly non-convex A, this is false, c.f.

A ∶= {x ∈ {−1,1}n ∣ x has at least
n

2
+
√
n �+1� coordinates}.
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Some consequences of Talagrand's convex

concentration inequality

For every set A ⊆ Rn and t ⩾ 0, we write

At ∶= {x ∈ Rn ∣ dist(x ,A) ⩽ t}.
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There exists c > 0 such that if A ⊆ Rn is convex and X
uniformly distributed over {−1,1}n, then

P[X ∈ A]P[X ∉ At] ⩽ exp(−ct2).

Theorem (Michel Talagrand)

There exists c > 0 such that if f ∶ Rn → R is convex and

1-Lipschitz, and X uniformly distributed over {−1,1}n, then

P [∣f (X ) −Ef (X )∣ ⩾ t] ⩽ 2 exp(−ct2).
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The entropy method

Michel Ledoux (1997, 1999, . . . )
introduces the entropy method to prove
concentration inequalities and recovers
many results with more transparent proofs.

Stéphane Boucheron, Gábor Lugosi, Pascal
Masssart (2009) + book (2013).
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Spin glasses

i

j k

+ +

−

1

Let (Wij) be i.i.d. N (0,1), and set

HN(σ) ∶=
1√
N

N

∑
i ,j=1

Wijσiσj .

Large-N asymptotics of

1

N
max

σ∈{−1,1}N
HN(σ) ?

1

N
log ∑

σ∈{−1,1}N

exp(βHN(σ)) ?
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Parisi's formula

Giorgio Parisi (1979, 1980) predicts

1

N
E log ∑

σ∈{±1}N

exp (βHN(σ))ÐÐÐ→
N→∞

inf
µ
{⋯}.

Referee's report (as summarized by Parisi):
�The approach does not make sense, but

the numbers coming from the formulae are

reasonable, so it can be published.�
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Spin glasses

Erwin Bolthausen gets Talagrand interested
(≃ 1995).
Regular meetings with Marc Mézard.

Spin glasses: a challenge to mathematicians

(1998 paper, 2003 book).

�The goal was to make sure that no stone

was left unturned.�
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Finally comes the proof

With key interpolation idea from Francesco
Guerra (2003), Talagrand proves the Parisi
formula (2006).

His wife WanSoo Rhee, mathematician at
Ohio State University, types the paper.

�I have been privileged with a life-time of

unconditional support.�
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Ultrametricity of the Gibbs measure

Dmitry Panchenko (2013)

The Gibbs measure ∝ eβHN(σ)

becomes ultrametric as N → +∞.

And a lot more now!
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A personal note

�I would say that the main feature of my work style is that I

try to get a full understanding. I cannot stop until I feel I

completely understand the problem.�
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