

Geometric Floquet Theory

MAX PLANCK INSTITUTE FOR THE PHYSICS OF COMPLEX SYSTEMS

Paul M Schindler

* * * Funded by the European Union

PM Schindler and MB, arXiv: 2410.07029

• why care about periodic drives in quantum systems?

quantum simulation

- Floquet engineering
 - artificial gauge fields
 - dynamical localization
 - topological matter
- nonequilibrium ordered states
 - ► time crystals, etc.

Marín Bukov

• why care about periodic drives in quantum systems?

quantum simulation

- Floquet engineering
 - artificial gauge fields
 - dynamical localization
 - topological matter
- nonequilibrium ordered states
 - ► time crystals, etc.

quantum computing

- quantum algorithms
 - Trotterization
- Floquet unitary circuits
- error correction
 - Floquet codes

• why care about periodic drives in quantum systems?

- Floquet engineering
 - artificial gauge fields
 - dynamical localization
 - topological matter
- nonequilibrium ordered states
 - ► time crystals, etc.

quantum computing

- quantum algorithms
 - Trotterization
- Floquet unitary circuits
- error correction
 - Floquet codes

spin-loci

pin-lock

time

• why care about periodic drives in quantum systems?

quantum computing

- quantum algorithms
 - ► Trotterization
- Floquet unitary circuits
- error correction
 - Floquet codes

quantum sensing

- dynamical decoupling
- Ramsey interferometry

Q: how do we manipulate periodically driven systems?

Marín Bukov

Floquet theory

Floquet theory

$$\dot{\psi}(t) = -iH(t)\psi(t)$$
, linear & $H(t+T) = H(t)$

theorem:

effective object (!) does not exist w/o drive

Floquet theory

 $\psi(t) = P(t) \exp(-itH_F[0])\psi(0)$

effective object (!) does not exist w/o drive

distinct rotating frame

micromotion

P(t) = P(t+T)

lab frame

Floquet (1883)

theorem:

۲

rotating frame

Floquet Hamiltonian,

time-<u>in</u>dependent

Merry-go-round

Marín Bukov

۲

mpipks (Dresden)

Marín Bukov

۲

instantaneous \neq evolved

Marín Bukov

۲

- solve Schrödinger equation
 - exact solutions: limited (circular drives, harmonic oscillators, etc.)
 - in general: compute time-ordered exponentials \rightarrow special functions

Floquet theorem

$$U(T,0) = \mathscr{T} \exp\left(-i \int_{0}^{T} dt H(t)\right) = \exp(-iTH_{F})$$

- solve Schrödinger equation
 - exact solutions: limited (circular drives, harmonic oscillators, etc.)
 - in general: compute time-ordered exponentials \rightarrow special functions
- inverse-frequency expansions (Magnus, van Vleck, etc.)

$$U(T,0) = \mathcal{T} \exp\left(-i\int_{0}^{T} dt H(t)\right) = \exp(-iTH_{F})$$

$$H_{F}^{(0)} = \frac{1}{T}\int_{0}^{T} dt H(t)$$

ansatz: $H_{F} = \sum_{n=0}^{\infty} H_{F}^{(n)}, \quad H_{F}^{(n)} \propto \omega^{-n}$

$$H_{F}^{(1)} = \frac{1}{2!Ti}\int_{0}^{T} dt_{1}\int_{0}^{t_{1}} dt_{2} [H(t_{1}), H(t_{2})]$$

Marín Bukov

- solve Schrödinger equation
 - exact solutions: limited (circular drives, harmonic oscillators, etc.)
 - in general: compute time-ordered exponentials \rightarrow special functions
- inverse-frequency expansions (Magnus, van Vleck, etc.)

$$U(T,0) = \mathcal{T} \exp\left(-i\int_{0}^{T} dt H(t)\right) = \exp(-iTH_{F})$$

$$H_{F}^{(0)} = \frac{1}{T}\int_{0}^{T} dt H(t)$$

ansatz: $H_{F} = \sum_{n=0}^{\infty} H_{F}^{(n)}, \quad H_{F}^{(n)} \propto \omega^{-n}$

$$H_{F}^{(1)} = \frac{1}{2!Ti}\int_{0}^{T} dt_{1}\int_{0}^{t_{1}} dt_{2} \left[H(t_{1}), H(t_{2})\right]$$

- limitation: has finite radius of convergence / asymptotic series
- fails to capture energy absorption (Floquet resonances)

►

- solve Schrödinger equation
 - exact solutions: limited (circular drives, harmonic oscillators, etc.)
 - in general: compute time-ordered exponentials \rightarrow special functions
- inverse-frequency expansions (Magnus, van Vleck, etc.)

$$U(T,0) = \mathcal{T} \exp\left(-i\int_{0}^{T} dt H(t)\right) = \exp(-iTH_{F})$$
$$H_{F}^{(0)} = \frac{1}{T}\int_{0}^{T} dt H(t)$$
ansatz: $H_{F} = \sum_{n=0}^{\infty} H_{F}^{(n)}, \quad H_{F}^{(n)} \propto \omega^{-n}$
$$H_{F}^{(1)} = \frac{1}{2!Ti}\int_{0}^{T} dt_{1}\int_{0}^{t_{1}} dt_{2} \left[H(t_{1}), H(t_{2})\right]$$

- limitation: has finite radius of convergence / asymptotic series
- fails to capture energy absorption (Floquet resonances)

origin:
$$H_F$$
 is non-local: $H_F = \sum_{n} \varepsilon_F^{(n)} |n_F\rangle \langle n_F| \longrightarrow \sum_{n} \varepsilon_F^{(n)} |n_F\rangle \langle n_F| + \omega |m_F\rangle \langle m_F| = H'_F$
e'state projector

mpipks (Dresden)

Marín Bukov

►

- solve Schrödinger equation
 - exact solutions: limited (circular drives, harmonic oscillators, etc.)
 - in general: compute time-ordered exponentials \rightarrow special functions
- inverse-frequency expansions (Magnus, van Vleck, etc.)

$$U(T,0) = \mathcal{T} \exp\left(-i\int_{0}^{T} dt H(t)\right) = \exp(-iTH_{F})$$

$$H_{F}^{(0)} = \frac{1}{T}\int_{0}^{T} dt H(t)$$

ansatz: $H_{F} = \sum_{n=0}^{\infty} H_{F}^{(n)}, \quad H_{F}^{(n)} \propto \omega^{-n}$

$$H_{F}^{(1)} = \frac{1}{2!Ti}\int_{0}^{T} dt_{1}\int_{0}^{t_{1}} dt_{2} [H(t_{1}), H(t_{2})]$$

- limitation: has finite radius of convergence / asymptotic series
- fails to capture energy absorption (Floquet resonances)

origin:
$$H_F$$
 is non-local: $H_F = \sum_{n} \varepsilon_F^{(n)} |n_F\rangle \langle n_F| \longrightarrow \sum_{n} \varepsilon_F^{(n)} |n_F\rangle \langle n_F| + \omega |m_F\rangle \langle m_F| = H'_F$
e'state projector

Q: other approaches to describe Floquet systems?

Marín Bukov

►

Geometric Floquet theory (take-home messages)

- * Floquet theory follows from the adiabatic theorem
 - alternative decomposition of dynamics: geometric & dynamical phases

PM Schindler and MB, arXiv: 2410.07029

Geometric Floquet theory (take-home messages)

- * Floquet theory follows from the adiabatic theorem
 - alternative decomposition of dynamics: geometric & dynamical phases
- * dynamical phase defines a <u>unique</u> Floquet ground state
 - guaranteed by parallel-transport gauge and the adiabatic limit

Geometric Floquet theory (take-home messages)

- * Floquet theory follows from the adiabatic theorem
 - alternative decomposition of dynamics: geometric & dynamical phases
- * dynamical phase defines a <u>unique</u> Floquet ground state
 - guaranteed by parallel-transport gauge and the adiabatic limit
- * geometric phase captures inherently nonequilibrium phenomena

mpipks

А

Static

Adiabatic evolution

- adiabatic gauge potentials
- counterdiabatic driving
- Geometric Floquet theory
 - Floquet theory as a shortcut to adiabaticity
 - quasienergy folding
 - the Floquet ground state
- Applications
 - heating, discrete time crystals
 - variational principle for Floquet Hamiltonian

PM Schindler and MB, arXiv: 2410.07029

ambiguous $H_{\rm F}$ $H_{\rm F}^{\prime}$ unfolding quası-energy $I_{\rm F}$ laser

С

Counter diabatic

Marín Bukov

Adiabatic evolution

- adiabatic gauge potentials
- counterdiabatic driving

PM Schindler and MB, arXiv: 2410.07029

Outline

Adiabatic driving

adiabatic theorem

- gapped e'state $H(\lambda) | n[\lambda] \rangle = \varepsilon(\lambda) | n[\lambda] \rangle$
- adiabatic limit: $\dot{\lambda} \to 0$, $T \to \infty$, $\dot{\lambda}T \to \text{const.}$

Adiabatic driving

- gapped e'state $H(\lambda) | n[\lambda] \rangle = \varepsilon(\lambda) | n[\lambda] \rangle$
- adiabatic limit: $\dot{\lambda} \to 0$, $T \to \infty$, $\dot{\lambda}T \to \text{const.}$

Landau Zener problem

$$|n(t)\rangle = \mathscr{T} \exp\left(-i \int_{0}^{t} \mathrm{d}s H(\lambda(s))\right) |n[0]\rangle \to e^{-i\phi_{n}(t)} e^{-i\gamma_{n}(t)} |n[\lambda(t)]\rangle$$

evolved state

instantaneous state

+ dynamical phase
$$\phi_n(t) = \int_0^t ds \ \varepsilon(\lambda(s))$$

+ geometric phase $\gamma_n(t) = \int_{\lambda(0)}^{\lambda(t)} d\lambda \ \langle n[\lambda] \ | i\partial_\lambda \ | n[\lambda] \rangle$
path-independent

mpipks (Dresden)

- breakdown of adiabatic evolution away from adiabatic limit
 - get rid of excitations by applying a counter-force
 - shortcut to adiabaticity

- breakdown of adiabatic evolution away from adiabatic limit
 - get rid of excitations by applying a counter-force
 - shortcut to adiabaticity

• counterdiabatic (CD) driving $H_{CD}(\lambda) = H(\lambda) + \dot{\lambda} \mathscr{A}_{\lambda}$

- breakdown of adiabatic evolution away from adiabatic limit
 - get rid of excitations by applying a counter-force
 - shortcut to adiabaticity

- counterdiabatic (CD) driving $H_{CD}(\lambda) = H(\lambda) + \dot{\lambda} \mathscr{A}_{\lambda}$
- identify cause of excitations • diagonalizing unitary: $U^{\dagger}(\lambda)H(\lambda)U(\lambda) = D_{\lambda}$ • co-moving frame Hamiltonian: $H_{co-mov} = U^{\dagger}HU - \dot{\lambda}U^{\dagger}i\partial_{\lambda}U = D_{\lambda} - \dot{\lambda}\tilde{A}_{\lambda}$

mpipks (Dresden)

- breakdown of adiabatic evolution away from adiabatic limit
 - get rid of excitations by applying a counter-force
 - shortcut to adiabaticity

• counterdiabatic (CD) driving $H_{CD}(\lambda) = H(\lambda) + \dot{\lambda}\mathscr{A}_{\lambda}$

Marín Bukov

Gauge potential

- AGP not unique: U(1) gauge freedom
 - re-phase e'state: $|n[\lambda]\rangle \mapsto e^{i\chi_n(\lambda)}|n[\lambda]\rangle \qquad \langle n$

$$\langle n | \mathcal{A}_{\lambda} | n \rangle \rightarrow \langle n | \mathcal{A}_{\lambda} | n \rangle - \partial_{\lambda} \chi_{n}$$

Berry connection not gauge invariant!

$$\mathscr{A}_{\lambda} \mapsto \mathscr{A}_{\lambda}' = \mathscr{A}_{\lambda} - \sum_{n} \partial_{\lambda} \chi_{n}(\lambda) |n[\lambda]\rangle \langle n[\lambda]|$$

• CD Hamiltonian not unique: $H_{CD} \mapsto H'_{CD} = H + \dot{\lambda} \mathscr{A}'_{\lambda}$

Gauge potential

Berry connection not gauge invariant!

- AGP not unique: U(1) gauge freedom
 - re-phase e'state: $|n[\lambda]\rangle \mapsto e^{i\chi_n(\lambda)}|n[\lambda]\rangle \qquad \langle n|\mathscr{A}_{\lambda}|n\rangle \to \langle n|\mathscr{A}_{\lambda}|n\rangle \partial_{\lambda}\chi_n$

$$\mathscr{A}_{\lambda} \mapsto \mathscr{A}_{\lambda}' = \mathscr{A}_{\lambda} - \sum_{n} \partial_{\lambda} \chi_{n}(\lambda) |n[\lambda]\rangle \langle n[\lambda]|$$

- CD Hamiltonian not unique: $H_{CD} \mapsto H'_{CD} = H + \dot{\lambda} \mathscr{A}'_{\lambda}$
- Kato potential: parallel-transport gauge

$$\mathscr{A}_{K} = \mathscr{A}_{\lambda} - \sum_{n} \langle n \, | \, \mathscr{A}_{\lambda} \, | \, n \rangle \, | \, n \rangle \langle n \, |$$

 $\mathscr{A}_{\lambda} \leftrightarrow i\partial_{\lambda}$ derivative $\mathscr{A}_{K} \leftrightarrow iD_{\lambda}$ covariant derivative

mpipks (Dresden)

mpipks (Dresden)

 $|n(t)\rangle = \mathcal{T} \exp\left(-i \int_{0}^{t} \mathrm{d}s \; H(\lambda(s))\right) |n(0)\rangle \to e^{i\phi_{n}(t)} e^{i\gamma_{n}(t)} |n[\lambda(t)]\rangle$ evolved state $\approx e^{i \text{ phase instantaneous state}}$ $|n(t)\rangle = \mathscr{T} \exp\left(-i \int_{0}^{t} \mathrm{d}s \, \frac{=H_{\mathrm{CD}}}{H(\lambda(s)) + \lambda \mathscr{A}_{K}(\lambda(s))}}\right) |n(0)\rangle = e^{i\phi_{n}(t)} e^{i\gamma_{n}(t)} |n[\lambda(t)]\rangle$

Gauge potential

unique: CD driving reproduces adiabatic phases

- Kato potential: *parallel-transport gauge* $\mathscr{A}_{K} = \mathscr{A}_{\lambda} \sum \langle n | \mathscr{A}_{\lambda} | n \rangle | n \rangle \langle n |$
- $\mathscr{A}_{\lambda} \mapsto \mathscr{A}'_{\lambda} = \mathscr{A}_{\lambda} \sum \partial_{\lambda} \chi_{n}(\lambda) |n[\lambda]\rangle \langle n[\lambda]|$

 $|n[\lambda]\rangle \mapsto e^{i\chi_n(\lambda)} |n[\lambda]\rangle \qquad \langle n | \mathcal{A}_{\lambda} | n \rangle \to \langle n | \mathcal{A}_{\lambda} | n \rangle - \partial_{\lambda}\chi_n$

n

- CD Hamiltonian not unique: $H_{CD} \mapsto H'_{CD} = H + \dot{\lambda} \mathscr{A}'_{\lambda}$

AGP not unique: U(1) gauge freedom

re-phase e'state:

experts

Berry connection not gauge invariant!

Outline

Geometric Floquet theory

- Floquet theory as a shortcut to adiabaticity
- quasienergy folding
- the Floquet ground state
- Applications
 - heating, discrete time crystals
 - variational principle for Floquet Hamiltonian

PM Schindler and MB, arXiv: 2410.07029

Marín Bukov

• Floquet's theorem:

 $H_F[0] = P^{\dagger}(t)H(t)P(t) - P^{\dagger}(t)i\partial_t P(t)$ $H_F[t] = H(t) - i\partial_t P(t)P^{\dagger}(t)$

• Floquet's theorem:

 $H_F[0] = P^{\dagger}(t)H(t)P(t) - P^{\dagger}(t)i\partial_t P(t)$ $H_F[t] = H(t) - i\partial_t P(t)P^{\dagger}(t)$

 $H(t) = H_F[t] + \mathscr{A}_F(t)$ H(t) is the CD Hamiltonian for $H_F[t]$

relation between CD driving and Floquet physics

• Floquet's theorem:

$$H_F[0] = P^{\dagger}(t)H(t)P(t) - P^{\dagger}(t)i\partial_t P(t)$$
$$H_F[t] = H(t) - i\partial_t P(t)P^{\dagger}(t)$$

 $H(t) = H_F[t] + \mathscr{A}_F(t)$ H(t) is the CD Hamiltonian for $H_F[t]$

relation between CD driving and Floquet physics

 $\bullet \text{ check: } |n_F(t)\rangle = \mathcal{T}e^{-i\int_0^t \mathrm{d}sH(s)} |n_F(0)\rangle = P(t)e^{-itH_F} |n_F(0)\rangle = e^{-it\varepsilon_F^{(n)}}P(t) |n_F(0)\rangle = e^{-it\varepsilon_F^{(n)}} |n_F(t)\rangle$

evolved state = $e^{i \text{ phase}}$ instantaneous state

• Floquet's theorem:

$$H_F[0] = P^{\dagger}(t)H(t)P(t) - P^{\dagger}(t)i\partial_t P(t)$$
$$H_F[t] = H(t) - i\partial_t P(t)P^{\dagger}(t)$$

 $H(t) = H_F[t] + \mathscr{A}_F(t)$ H(t) is the CD Hamiltonian for $H_F[t]$

relation between CD driving and Floquet physics

• check: $|n_F(t)\rangle = \mathcal{T}e^{-i\int_0^t ds H(s)} |n_F(0)\rangle = P(t)e^{-itH_F} |n_F(0)\rangle = e^{-it\varepsilon_F^{(n)}}P(t) |n_F[0]\rangle = e^{-it\varepsilon_F^{(n)}} |n_F[t]\rangle$ evolved state = $e^{i\,\text{phase}}$ instantaneous state

• given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$

• variational principle for $\mathscr{A}_F(t)$ gives nonperturbative approximation to $H_F[t]$

Marín Bukov

- Floquet's theorem: special case of the Adiabatic theorem
 - adiabatic theorem (in counterdiabatic form) for $\lambda \stackrel{\circ}{=} t$:
 - $H_{CD} = H(t) = H_F[t] + \mathscr{A}_F(t)$ generates adiabatic evolution w.r.t. the states of $H_F[t]$
- Floquet's theorem: special case of the Adiabatic theorem
 - adiabatic theorem (in counterdiabatic form) for $\lambda \stackrel{\circ}{=} t$:
 - $H_{CD} = H(t) = H_F[t] + \mathscr{A}_F(t)$ generates adiabatic evolution w.r.t. the states of $H_F[t]$
 - co-moving frame: $\tilde{H}(t) = \tilde{H}_F[t]$, i.e., no excitations:

$$\tilde{U}(t,0) = \exp(-it\tilde{H}_F[0])$$

Floquet rotating frame is the co-moving frame for H_F w.r.t. time

- Floquet's theorem: special case of the Adiabatic theorem
 - adiabatic theorem (in counterdiabatic form) for $\lambda \stackrel{\circ}{=} t$:
 - $H_{CD} = H(t) = H_F[t] + \mathscr{A}_F(t)$ generates adiabatic evolution w.r.t. the states of $H_F[t]$
 - co-moving frame: $\tilde{H}(t) = \tilde{H}_F[t]$, i.e., no excitations:

$$\tilde{U}(t,0) = \exp(-it\tilde{H}_F[0])$$

Floquet rotating frame is the co-moving frame for H_F w.r.t. time

• evolution in lab frame:
$$U(t,0) = \mathcal{T} \exp\left(-i \int_0^t \mathscr{A}_F(s) ds\right) \exp(-itH_F[0])$$

= $P(t) \exp(-itH_F[0])$

recover Floquet's theorem

for general proof: PM Schindler and MB, arXiv: 2410.07029

Marín Bukov

$$H(t) = H_F[t] + \mathscr{A}_F(t) \qquad \qquad U_F = \exp(-iTH_F)$$

quasienergy spectrum

▶ recall: quasienergies defined up to integer multiple of drive frequency: $\varepsilon_F^{(n)} + m\omega$, $m \in \mathbb{Z}$

$$H(t) = H_F[t] + \mathscr{A}_F(t) \mapsto H_F[t] - \sum_n \partial_t \chi_n(t) |n_F[t]\rangle \langle n_F[t]| + \mathscr{A}_F(t)$$

▶ recall: quasienergies defined up to integer multiple of drive frequency: $\varepsilon_F^{(n)} + m\omega$, $m \in \mathbb{Z}$

• U(1) gauge: $|n_F[t]\rangle \mapsto e^{i\chi(t)} |n_F[t]\rangle$; $\langle n_F|\mathscr{A}_F|n_F\rangle \mapsto \langle n_F|\mathscr{A}_F|n_F\rangle - \partial_t\chi$

spectrum

$$H(t) = H_F[t] + \mathscr{A}_F(t) \mapsto H_F[t] - \sum_n \partial_t \chi_n(t) |n_F[t]\rangle \langle n_F[t]| + \mathscr{A}_F(t)$$

- ▶ recall: quasienergies defined up to integer multiple of drive frequency: $\varepsilon_F^{(n)} + m\omega$, $m \in \mathbb{Z}$
- U(1) gauge: $|n_F[t]\rangle \mapsto e^{i\chi(t)} |n_F[t]\rangle$; $\langle n_F|\mathscr{A}_F|n_F\rangle \mapsto \langle n_F|\mathscr{A}_F|n_F\rangle \partial_t\chi$
- impose periodicity $|n_F[t+T]\rangle = |n_F[t]\rangle$: $\chi(t) = m\omega t + \sum_{\ell} a_\ell \sin(\ell\omega t)$ $\partial_t \chi = m\omega + \sum_{\ell} \ell \omega a_\ell \cos(\ell\omega t)$

mpipks (Dresden)

Marín Bukov

spectrum

spectrum

$$\begin{split} H(t) &= H_F[t] + \mathscr{A}_F(t) \ \mapsto \ H_F[t] - \sum_n \partial_t \chi_n(t) \, | \, n_F[t] \rangle \langle n_F[t] \, | \, + \mathscr{A}_F(t) \\ & \varepsilon_F^{(n)} \mapsto \varepsilon_F^{(n)} - \partial_t \chi_n^n(t) \end{split}$$

▶ recall: quasienergies defined up to integer multiple of drive frequency: $\varepsilon_F^{(n)} + m\omega$, $m \in \mathbb{Z}$

- U(1) gauge: $|n_F[t]\rangle \mapsto e^{i\chi(t)}|n_F[t]\rangle$; $\langle n_F|\mathscr{A}_F|n_F\rangle \mapsto \langle n_F|\mathscr{A}_F|n_F\rangle \partial_t\chi$
- impose periodicity $|n_F[t+T]\rangle = |n_F[t]\rangle$: $\chi(t) = m\omega t + \sum_{\ell} a_\ell \sin(\ell\omega t)$ $\partial_t \chi = m\omega + \sum_{\ell} \ell \omega a_\ell \cos(\ell\omega t)$
- quasienergies are time-independent: $a_{\ell} = 0$

mpipks (Dresden)

spectrum

$$\begin{split} H(t) &= H_F[t] + \mathscr{A}_F(t) \ \mapsto \ H_F[t] - \sum_n \partial_t \chi_n(t) \, | \, n_F[t] \rangle \langle n_F[t] \, | \, + \mathscr{A}_F(t) \\ & \varepsilon_F^{(n)} \mapsto \varepsilon_F^{(n)} - \partial_t \chi_n^n(t) \end{split}$$

▶ recall: quasienergies defined up to integer multiple of drive frequency: $\varepsilon_F^{(n)} + m\omega$, $m \in \mathbb{Z}$

- U(1) gauge: $|n_F[t]\rangle \mapsto e^{i\chi(t)} |n_F[t]\rangle$; $\langle n_F|\mathscr{A}_F|n_F\rangle \mapsto \langle n_F|\mathscr{A}_F|n_F\rangle \partial_t\chi$
- impose periodicity $|n_F[t+T]\rangle = |n_F[t]\rangle$: $\chi(t) = m\omega t + \sum_{\ell} a_{\ell} \sin(\ell\omega t)$ $\partial_t \chi = m\omega + \sum_{\ell} \ell \omega a_{\ell} \cos(\ell\omega t)$
- quasienergies are time-independent: $a_{\ell} = 0$
- ► leftover gauge freedom: $\partial_t \chi = m\omega \Rightarrow$ folding

mpipks (Dresden)

spectrum

$$\begin{split} H(t) &= H_F[t] + \mathscr{A}_F(t) \ \mapsto \ H_F[t] - \sum_n \partial_t \chi_n(t) \, | \, n_F[t] \rangle \langle n_F[t] \, | \, + \mathscr{A}_F(t) \\ & \varepsilon_F^{(n)} \mapsto \varepsilon_F^{(n)} - \partial_t \chi_n^n(t) \end{split}$$

▶ recall: quasienergies defined up to integer multiple of drive frequency: $\varepsilon_F^{(n)} + m\omega$, $m \in \mathbb{Z}$

• U(1) gauge: $|n_F[t]\rangle \mapsto e^{i\chi(t)} |n_F[t]\rangle$; $\langle n_F|\mathscr{A}_F|n_F\rangle \mapsto \langle n_F|\mathscr{A}_F|n_F\rangle - \partial_t\chi$

• impose periodicity
$$|n_F[t+T]\rangle = |n_F[t]\rangle$$
:

- quasienergies are time-independent: $a_{\ell} = 0$
- leftover gauge freedom: $\partial_t \chi = m\omega \Rightarrow$ folding
- periodicity breaks gauge group: $U(1) \rightarrow \mathbb{Z}$

spectrum

$$\begin{split} H(t) &= H_F[t] + \mathscr{A}_F(t) \ \mapsto \ H_F[t] - \sum_n \partial_t \chi_n(t) \, | \, n_F[t] \rangle \langle n_F[t] \, | \, + \mathscr{A}_F(t) \\ & \varepsilon_F^{(n)} \mapsto \varepsilon_F^{(n)} - \partial_t \chi_n^n(t) \end{split}$$

▶ recall: quasienergies defined up to integer multiple of drive frequency: $\varepsilon_F^{(n)} + m\omega$, $m \in \mathbb{Z}$

• U(1) gauge: $|n_F[t]\rangle \mapsto e^{i\chi(t)} |n_F[t]\rangle$; $\langle n_F|\mathscr{A}_F|n_F\rangle \mapsto \langle n_F|\mathscr{A}_F|n_F\rangle - \partial_t\chi$

• impose periodicity
$$|n_F[t+T]\rangle = |n_F[t]\rangle$$
:

- quasienergies are time-independent: $a_{\ell} = 0$
- leftover gauge freedom: $\partial_t \chi = m\omega \Rightarrow$ folding
- periodicity breaks gauge group: $U(1) \rightarrow \mathbb{Z}$

quasienergy folding is a consequence of partial gauge fixing

mpipks (Dresden)

$$H(t) = H_F[t] + \mathscr{A}_F(t) \qquad \text{micromotion} \qquad \text{quasienergy}$$

$$\bullet \text{ evolution operator} \quad U(t,0) = \mathscr{T} \exp\left(-i\int_0^t \mathscr{A}_F(s) \mathrm{d}s\right) \\ \exp(-itH_F[0]) \qquad \text{periodic gauge}$$

$$\bullet \text{ use Kato potential } \mathscr{A}_K \qquad = \mathscr{T} \exp\left(-i\int_0^t \mathscr{A}_K(s) \mathrm{d}s\right) \\ \exp(-it \mathbb{E}(t,0)) \qquad \text{parallel-transport} \\ \text{gauge} \\ \text{geometric phase} \qquad \text{dynamical phase}$$

$$H(t) = H_F[t] + \mathscr{A}_F(t) \qquad \text{micromotion} \qquad \text{quasienergy}$$

• evolution operator $U(t,0) = \mathscr{T} \exp\left(-i\int_0^t \mathscr{A}_F(s)ds\right) \exp(-itH_F[0]) \qquad \text{periodic gauge}$
• use Kato potential $\mathscr{A}_K = \mathscr{T} \exp\left(-i\int_0^t \mathscr{A}_K(s)ds\right) \exp(-it \pounds(t,0)) \qquad \text{parallel-transport} \qquad \text{gauge} \qquad \text{geometric phase} \qquad \text{dynamical phase}$

• Average Energy operator Æ and H_F share same e'states (Floquet states)

$$\mathcal{E}(t,0) = \sum_{n} \mathfrak{E}_{n}(t,0) |n_{F}[0]\rangle \langle n_{F}[0]| \qquad \mathfrak{E}_{n}(t,0) = \frac{1}{t} \int_{0}^{t} \mathrm{d}s \, \langle n_{F}[s] | H(s) | n_{F}[s] \rangle$$

unfolded since H(t) is extensive

★ order Floquet states

$$H(t) = H_F[t] + \mathscr{A}_F(t) \qquad \text{micromotion} \qquad \text{quasienergy}$$

$$\bullet \text{ evolution operator} \quad U(t,0) = \mathscr{T} \exp\left(-i\int_0^t \mathscr{A}_F(s)ds\right) \exp(-itH_F[0]) \qquad \text{periodic gauge}$$

$$\bullet \text{ use Kato potential } \mathscr{A}_K = \mathscr{T} \exp\left(-i\int_0^t \mathscr{A}_K(s)ds\right) \exp(-it \pounds(t,0)) \qquad \text{parallel-transport} \qquad \text{gauge}$$

$$= \operatorname{geometric phase} \qquad \operatorname{dynamical phase}$$

• Average Energy operator Æ and H_F share same e'states (Floquet states)

$$\mathcal{E}(t,0) = \sum_{n} \mathfrak{E}_{n}(t,0) |n_{F}[0]\rangle \langle n_{F}[0]| \qquad \mathfrak{E}_{n}(t,0) = \frac{1}{t} \int_{0}^{t} \mathrm{d}s \, \langle n_{F}[s] | H(s) | n_{F}[s] \rangle$$

unfolded since H(t) is extensive

★ order Floquet states

Floquet unitary:
$$U(T,0) = \mathcal{T} \exp\left(-i \int_0^T \mathscr{A}_K(s) ds\right) \exp\left(-iT \mathcal{E}(T,0)\right)$$

Wilson loop, Berry phases

$$\varepsilon_F^{(n)} = T^{-1} \gamma_n(T) + \mathfrak{X}_n(T)$$

period-averaged energy indep. of phase of the drive

Marín Bukov

• Average Energy operator \mathbb{E} and H_F share same e'states (Floquet states)

$$\underbrace{\mathbb{E}}_{n}(t,0) = \sum_{n} \underbrace{\mathbb{E}}_{n}(t,0) \left| n_{F}[0] \right\rangle \left\langle n_{F}[0] \right| \qquad \underbrace{\mathbb{E}}_{n}(t,0) = \frac{1}{t} \int_{0}^{t} \mathrm{d}s \left\langle n_{F}[s] \left| H(s) \right| n_{F}[s] \right\rangle$$

unfolded since H(t) is extensive

★ order Floquet states

► Floquet unitary:
$$U(T,0) = \mathcal{T} \exp\left(-i \int_0^T \mathscr{A}_K(s) ds\right) \exp\left(-iT \mathbb{E}(T,0)\right)$$

Wilson loop, Berry phases

$$\varepsilon_F^{(n)} = T^{-1} \gamma_n(T) + \mathfrak{X}_n(T)$$

period-averaged energy indep. of phase of the drive

Marín Bukov

1

Outline

• Applications

- heating, discrete time crystals
- variational principle for Floquet Hamiltonian

PM Schindler and MB, arXiv: 2410.07029

laser

Marín Bukov

• evolution operator $U_F = e^{-i\frac{T}{4}H^z}e^{-i\frac{T}{2}H^x}e^{-i\frac{T}{4}H^z}$

• evolve GS
$$|GS(t)\rangle$$
 of $H_F^{(0)} = H^x + H^z$

• measure long-time fidelity with exact $|n_F\rangle$

 $F_0 = |\langle \mathrm{GS}(t) | n_F \rangle|^2$

• evolution operator $U_F = e^{-i\frac{T}{4}H^z}e^{-i\frac{T}{2}H^x}e^{-i\frac{T}{4}H^z}$

• evolve GS
$$|GS(t)\rangle$$
 of $H_F^{(0)} = H^x + H^z$

- measure long-time fidelity with exact $|n_F\rangle$

 $F_0 = |\langle \mathbf{GS}(t) | n_F \rangle|^2$

- distribution over q'energy spectrum
 - occupation gradually delocalizes

• evolution operator $U_F = e^{-i\frac{T}{4}H^z}e^{-i\frac{T}{2}H^x}e^{-i\frac{T}{4}H^z}$

• evolve GS
$$|GS(t)\rangle$$
 of $H_F^{(0)} = H^x + H^z$

• measure long-time fidelity with exact $|n_F\rangle$ $F_0 = |\langle GS(t) | n_F \rangle|^2$

- distribution over q'energy spectrum
 - occupation gradually delocalizes
- distribution over average energy
 - occupation remains in Floquet GS
 - $alleptilde{ ext{aspectrum extensive up to } T_*$
 - æ spectrum implodes for $T > T_*$

Q: are certain Floquet states special?

Marín Bukov

$$U_F = e^{-i\frac{T}{4}H^z} e^{-i\frac{T}{2}H^x} e^{-i\frac{T}{4}H^z}$$

- distribution over average energy
 - $ext{a}$ spectrum extensive up to T_*
 - æ spectrum implodes for $T > T_*$

Q: are certain Floquet states special?

locality of average energy operator

recall:
$$H_F$$
 is non-local: $H_F = \sum_{n} \varepsilon_F^{(n)} |n_F\rangle \langle n_F| \longrightarrow \sum_{n} \varepsilon_F^{(n)} |n_F\rangle \langle n_F| + \omega |m_F\rangle \langle m_F| = H'_F$

$$U_F = e^{-i\frac{T}{4}H^z} e^{-i\frac{T}{2}H^x} e^{-i\frac{T}{4}H^z}$$

- distribution over average energy
 - $ext{a}$ spectrum extensive up to T_*
 - $alleptilde{a}$ spectrum implodes for $T > T_*$

Q: are certain Floquet states special?

locality of average energy operator

a'atata projector

$$recall: H_F \text{ is non-local:} \quad H_F = \sum_{n} \varepsilon_F^{(n)} |n_F\rangle \langle n_F| \longrightarrow \sum_{n} \varepsilon_F^{(n)} |n_F\rangle \langle n_F| + \omega |m_F\rangle \langle m_F| = H'_F$$

$$\mathcal{O}_{\text{approx}} = \sum_{i,j} o_i \sigma^i + o_{ij} \sigma^i \sigma^j \prod_{\substack{i=0\\j \in \mathcal{O}_{\text{exact}}}} \int_{i=0}^{\infty} \int$$

$$U_F = e^{-i\frac{T}{4}H^z} e^{-i\frac{T}{2}H^x} e^{-i\frac{T}{4}H^z}$$

- distribution over average energy
 - alpha spectrum extensive up to T_*
 - æ spectrum implodes for $T > T_*$

Q: are certain Floquet states special?

locality of average energy operator

• evolution operator $U_F(\theta_x) = e^{-iTH^z}e^{-i\theta_xH^x}$

mpipks (Dresden)

• evolution operator $U_F(\theta_x) = e^{-iTH^z}e^{-i\theta_xH^x}$

- pairing of Floquet states
 - $U_F(\pi) | n_F^{\pm} \rangle = \pm e^{-iT\varepsilon_n} | n_F^{\pm} \rangle$
 - π -gap in q'energy spectrum

• evolution operator $U_F(\theta_x) = e^{-iTH^z}e^{-i\theta_xH^x}$

$$U_F(\pi) \left| n_F^{\pm} \right\rangle = \pm e^{-iT\varepsilon_n} \left| n_F^{\pm} \right\rangle$$

average energy

$$\mathfrak{X}_n = \frac{1}{t} \int_0^t \mathrm{d}s \, \left\langle n_F^{\pm}[s] \, | \, H(s) \, | \, n_F^{\pm}[s] \right\rangle = \varepsilon_n \quad \text{perfectly degenerate!}$$

 $\pi \begin{bmatrix} 1 \\ 1 \\ -\pi \end{bmatrix} \begin{bmatrix} 1$

robust to perturbations in θ_x

• evolution operator $U_F(\theta_x) = e^{-iTH^z}e^{-i\theta_xH^x}$

$$U_F(\pi) \left| n_F^{\pm} \right\rangle = \pm e^{-iT\varepsilon_n} \left| n_F^{\pm} \right\rangle$$

• average energy

$$\mathfrak{X}_n = \frac{1}{t} \int_0^t \mathrm{d}s \, \left\langle n_F^{\pm}[s] \, | \, H(s) \, | \, n_F^{\pm}[s] \right\rangle = \varepsilon_n \quad \text{perfectly degenerate!}$$

robust to perturbations in θ_x

• evolution operator $U_F(\theta_x) = e^{-iTH^z}e^{-i\theta_xH^x}$

$$U_F(\pi) \left| n_F^{\pm} \right\rangle = \pm e^{-iT\varepsilon_n} \left| n_F^{\pm} \right\rangle$$

average energy

$$\mathfrak{X}_n = \frac{1}{t} \int_0^t \mathrm{d}s \, \left\langle n_F^{\pm}[s] \, | \, H(s) \, | \, n_F^{\pm}[s] \right\rangle = \varepsilon_n \quad \text{perfectly degenerate!}$$

highly sensitive probe of DTC transition

L = 10 spins

robust to perturbations in $heta_{_{\mathcal{X}}}$

mpipks (Dresden)

• evolution operator $U_F(\theta_x) = e^{-iTH^z}e^{-i\theta_xH^x}$

$$U_F(\pi) \left| n_F^{\pm} \right\rangle = \pm e^{-iT\varepsilon_n} \left| n_F^{\pm} \right\rangle$$

average energy

$$\mathfrak{X}_n = \frac{1}{t} \int_0^t \mathrm{d}s \, \left\langle n_F^{\pm}[s] \, | \, H(s) \, | \, n_F^{\pm}[s] \right\rangle = \varepsilon_n \quad \text{perfectly degenerate!}$$

- highly sensitive probe of DTC transition
- Berry phases

$$\varepsilon_F^{(n)} = T^{-1} \gamma_n(T) + \mathfrak{X}_n(T)$$

• π -gap is purely geometric

 \rightarrow similar for π -modes in AFTIs

 $\Delta \epsilon_{
m F} \left[1/T
ight]$

inherently nonequilibrium phenomena have geometric origin

Marín Bukov

mpipks (Dresden)

robust to perturbations in $heta_{_{\!X}}$

 $H(t) = H_F[t] + \mathscr{A}_F(t)$

• given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$

 $H(t) = H_F[t] + \mathscr{A}_F(t)$

• given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$

• defining equation for gauge potential: $G(\mathscr{A}_F) = i[H, \mathscr{A}_F] - \partial_t H + \partial_t \mathscr{A}_F = 0$

$$H(t) = H_F[t] + \mathscr{A}_F(t)$$

• given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$

- defining equation for gauge potential: $G(\mathscr{A}_F) = i[H, \mathscr{A}_F] \partial_t H + \partial_t \mathscr{A}_F = 0$
- turn to algorithm
 - make periodic ansatz for kick operator $K(t) = \sum k_{n\ell} e^{-it}$

unknown pre-selected

$$K(t) = \sum_{n,\ell} k_{n\ell} e^{-i\ell\omega t} \mathcal{O}_n$$

$$H(t) = H_F[t] + \mathscr{A}_F(t)$$

unknown

pre-selected

- given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$
- defining equation for gauge potential: $G(\mathscr{A}_F) = i[H, \mathscr{A}_F] - \partial_t H + \partial_t \mathscr{A}_F = 0$ $oldsymbol{O}$
- turn to algorithm

 - make periodic ansatz for kick operator $K(t) = \sum_{n,\ell} k_{n\ell} e^{-i\ell\omega t} \mathcal{O}_n$ compute associated gauge potential: $\mathscr{X}_F(t) = (i\partial_t e^{iK(t)}) e^{-iK(t)}$

$$H(t) = H_F[t] + \mathscr{A}_F(t)$$

unknown

pre-selected

• given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$

- defining equation for gauge potential: $G(\mathscr{A}_F) = i[H, \mathscr{A}_F] - \partial_t H + \partial_t \mathscr{A}_F = 0$ $oldsymbol{O}$
- turn to algorithm
 - make periodic ansatz for kick operator $K(t) = \sum_{n,\ell} k_{n\ell} e^{-i\ell\omega t} \mathcal{O}_n$ compute associated gauge potential: $\mathscr{X}_F(t) = (i\partial_t e^{iK(t)}) e^{-iK(t)}$

• compute
$$G(\mathscr{X}_F) = \sum_{n,\ell} g_{n\ell} e^{-i\ell\omega t} \mathcal{O}_n$$

$$H(t) = H_F[t] + \mathscr{A}_F(t)$$

unknown

pre-selected

- given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$
- defining equation for gauge potential: $G(\mathscr{A}_F) = i[H, \mathscr{A}_F] - \partial_t H + \partial_t \mathscr{A}_F = 0$ $oldsymbol{O}$
- turn to algorithm
 - turn to algorithm make periodic ansatz for kick operator $K(t) = \sum_{n}^{\infty} k_{n\ell} e^{-i\ell\omega t} \mathcal{O}_n$
 - compute associated gauge potential: $\mathscr{X}_F(t) = (i\partial_t e^{iK(t)}) e^{-iK(t)}$
 - compute $G(\mathscr{X}_F) = \sum_{n,\ell} g_{n\ell} e^{-i\ell\omega t} \mathcal{O}_n$
 - update: $k_{n\ell} \rightarrow k_{n\ell} \eta |g_{n\ell}|$, for some η

Marín Bukov

$$H(t) = H_F[t] + \mathscr{A}_F(t)$$

unknown

pre-selected

- given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$
- defining equation for gauge potential: $G(\mathscr{A}_F) = i[H, \mathscr{A}_F] - \partial_t H + \partial_t \mathscr{A}_F = 0$ $oldsymbol{O}$
- turn to algorithm
 - make periodic ansatz for kick operator $K(t) = \sum_{n=1}^{\infty} k_{n\ell} e^{-i\ell\omega t} \mathcal{O}_n$
 - compute associated gauge potential: $\mathscr{X}_F(t) = (i\partial_t e^{iK(t)}) e^{-iK(t)}$
 - compute $G(\mathscr{X}_F) = \sum_{n,\ell} g_{n\ell} e^{-i\ell\omega t} \mathcal{O}_n$
 - update: $k_{n\ell} \rightarrow k_{n\ell} \eta |g_{n\ell}|$, for some η
 - iterate until convergence

$$H(t) = H_F[t] + \mathscr{A}_F(t)$$

unknown

pre-selected

mpipks (Dresden)

• given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$

- defining equation for gauge potential: $G(\mathscr{A}_F) = i[H, \mathscr{A}_F] \partial_t H + \partial_t \mathscr{A}_F = 0$
- turn to algorithm
 - make periodic ansatz for kick operator $K(t) = \sum k_{n\ell} e^{-i\ell\omega t} Q_n$
 - ► compute associated gauge potential: $\mathscr{X}_F(t) = (i\partial_t e^{iK(t)}) e^{-iK(t)}$

$$H(t) = H_F[t] + \mathscr{A}_F(t)$$

unknown

pre-selected

• given drive H(t), finding AGP $\mathscr{A}_F(t)$ determines Floquet Hamiltonian $H_F[t]$

- defining equation for gauge potential: $G(\mathscr{A}_F) = i[H, \mathscr{A}_F] \partial_t H + \partial_t \mathscr{A}_F = 0$
- turn to algorithm
 - make periodic ansatz for kick operator $K(t) = \sum k_{n\ell} e^{-i\ell\omega t} Q_n$
 - compute associated gauge potential: $\mathscr{X}_{F}(t) = (i\partial_{t}e^{iK(t)})e^{-iK(t)}$

Controlling systems on top of Floquet drives

so far: ramp time/phase of the drive

what about other control parameters?

amplitude ramps

frequency chirps

external ramps

 counterdiabatic driving of Floquet engineered states

PM Schindler and MB, PRL 133, 123402 (2024)
Controlling systems on top of Floquet drives

PM Schindler and MB, PRL 133, 123402 (2024)

mpipks (Dresden)

PM Schindler and MB, arXiv: 2410.07029

Paul M Schindler

* take-home messages:

• lab frame Hamiltonian H(t) generates CD driving for Floquet Hamiltonian $H_F[t]$

parallel-transport formulation leads to unique Floquet ground state

PM Schindler and MB, arXiv: 2410.07029

* take-home messages:

- lab frame Hamiltonian H(t) generates CD driving for Floquet Hamiltonian $H_F[t]$
 - Floquet's theorem follows from the Adiabatic theorem (special case)
 - q'energy folding: consequence of partial gauge fixing for AGP: $U(1) \rightarrow \mathbb{Z}$
- parallel-transport formulation leads to unique Floquet ground state

PM Schindler and MB, arXiv: 2410.07029

* take-home messages:

- ► lab frame Hamiltonian H(t) generates CD driving for Floquet Hamiltonian $H_F[t]$
 - Floquet's theorem follows from the Adiabatic theorem (special case)
 - q'energy folding: consequence of partial gauge fixing for AGP: $U(1) \rightarrow \mathbb{Z}$
- parallel-transport formulation leads to unique Floquet ground state
 - alternative decomposition of strobo. dynamics: geometric & dynamical phases
 - inherently nonequilibrium effects have geometric origin (time crystals, anomalous topo. insulators)

PM Schindler and MB, arXiv: 2410.07029

www.pks.mpg.de/nqd

- * take-home messages:
 - lab frame Hamiltonian H(t) generates CD driving for Floquet Hamiltonian $H_F[t]$
 - Floquet's theorem follows from the Adiabatic theorem (special case)
 - q'energy folding: consequence of partial gauge fixing for AGP: $U(1) \rightarrow \mathbb{Z}$
 - parallel-transport formulation leads to unique Floquet ground state
 - alternative decomposition of strobo. dynamics: geometric & dynamical phases
 - inherently nonequilibrium effects have geometric origin (time crystals, anomalous topo. insulators)
- 'elementary' families of periodic drives:
 - Floquet decomposition: $H(t) = H_F[t] + \mathscr{A}_F(t)$

PM Schindler and MB, arXiv: 2410.07029

- * take-home messages:
 - ▶ lab frame Hamiltonian H(t) generates CD driving for Floquet Hamiltonian $H_F[t]$
 - Floquet's theorem follows from the Adiabatic theorem (special case)
 - q'energy folding: consequence of partial gauge fixing for AGP: $U(1) \rightarrow \mathbb{Z}$
 - parallel-transport formulation leads to unique Floquet ground state
 - alternative decomposition of strobo. dynamics: geometric & dynamical phases
 - inherently nonequilibrium effects have geometric origin (time crystals, anomalous topo. insulators)
 - 'elementary' families of periodic drives:
 - Floquet decomposition: $H(t) = H_F[t] + \mathscr{A}_F(t)$

(i) equilibrium 'drives': $\mathscr{A}_F \equiv 0 \implies H(t) = \text{const}$ static

(ii) pure-micromotion drives: $H_F \equiv 0 \implies U(t) = P(t)$ no heating

• Kato decomposition: $H(t) = H_K(t) + \mathscr{A}_K(t)$

PM Schindler and MB, arXiv: 2410.07029

www.pks.mpg.de/nqd

- * take-home messages:
 - lab frame Hamiltonian H(t) generates CD driving for Floquet Hamiltonian $H_F[t]$
 - Floquet's theorem follows from the Adiabatic theorem (special case)
 - q'energy folding: consequence of partial gauge fixing for AGP: $U(1) \rightarrow \mathbb{Z}$
 - parallel-transport formulation leads to unique Floquet ground state
 - alternative decomposition of strobo. dynamics: geometric & dynamical phases
 - inherently nonequilibrium effects have geometric origin (time crystals, anomalous topo. insulators)
- 'elementary' families of periodic drives:
 - Floquet decomposition: $H(t) = H_F[t] + \mathscr{A}_F(t)$

(i) equilibrium 'drives': $\mathscr{A}_F \equiv 0 \implies H(t) = \text{const}$ static

(ii) pure-micromotion drives: $H_F \equiv 0 \implies U(t) = P(t)$ no heating

• Kato decomposition: $H(t) = H_K(t) + \mathscr{A}_K(t)$ (iii) flat drives: Æ

(iv) pure-geometric drives: $H_K \equiv 0 \implies U(t) = W(t)$ q'energy = geometric phase (no Floquet ground state!) mpipks (Dresden)

Floquet resonances

$$H(t) = \frac{1}{2} \sum_{n=1}^{L} \left[\left(J\sigma_{n+1}^{+} \sigma_{n}^{-} + Aie^{-i\omega t} \sigma_{n+1}^{+} \sigma_{n}^{+} + h.c. \right) + \frac{g}{2} \sigma_{n}^{z} \right]$$

$$H(t) = \sum_{k} \boldsymbol{\psi}_{k}^{\dagger} h(k, t) \boldsymbol{\psi}_{k}$$
$$h(k, t) = \Delta_{k} \tau^{z} + A_{k} \left[\cos(\omega t) \tau^{x} + \sin(\omega t) \tau^{y} \right]$$

$$\Delta_k = g + J\cos(k)$$
$$A_k = A\sin(k)$$

Anomalous Floquet topological insulators

mpipks (Dresden)

Anomalous Floquet topological insulators

mpipks (Dresden)

• 2LS: circular drive

• 2LS: resonant linear drive

Marín Bukov

21 harmonics

mpipks (Dresden)

nonintegrable Ising chain:

$$H(t) = \sum_{j} JZ_{j+1}Z_j + h_z Z_j + h_x \sin \omega t X_j$$

- numerically compute exact H_F : ground truth
- compute approximation to H_F
 - numerically, variational \mathcal{H}_F

$$K \in \left\{ \sum_{j} X_{j}, \sum_{j} Y_{j}, \sum_{j} Z_{j}, \sum_{j} X_{j}X_{j+1}, \sum_{j} Y_{j}Y_{j+1}, \sum_{j} Z_{j}Z_{j+1}, \sum_{j} X_{j}Y_{j+1} + Y_{j}X_{j+1}, \sum_{j} Y_{j}Z_{j+1} + Z_{j}Y_{j+1}, \sum_{j} Z_{j}X_{j+1} + X_{j}Z_{j+1} \right\}$$

+ keep up to 21 Fourier harmonics

► analytically, Floquet-Magnus $H_{\text{FM},n}$ (to a fixed order n = 0,1,2)

$$H_{\rm FM}^{(0)} = \frac{1}{T} \int_0^T \mathrm{d}t H(t) \qquad \qquad H_{\rm FM}^{(1)} = \frac{1}{2!Ti} \int_0^T \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \ [H(t_1), H(t_2)] \qquad \qquad \cdots$$

• compare time evolution operators: $\|e^{-iTH_F} - e^{-iT\mathcal{H}_F}\|, \|e^{-iTH_F} - e^{-iTH_{FM}}\|$

Marín Bukov

mpipks (Dresden)

• nonintegrable Ising chain:
$$H(t) = \sum_{j} JZ_{j+1}Z_{j} + h_{z}Z_{j} + h_{x}\sin\omega tX_{j}$$
$$K \in \left\{ \sum_{j} X_{j}, \sum_{j} Y_{j}, \sum_{j} Z_{j}, \sum_{j} X_{j}X_{j+1}, \sum_{j} Y_{j}Y_{j+1}, \sum_{j} Z_{j}Z_{j+1}, \sum_{j} X_{j}Y_{j+1} + Y_{j}X_{j+1}, \sum_{j} Y_{j}Z_{j+1} + Z_{j}Y_{j+1}, \sum_{j} Z_{j}X_{j+1} + X_{j}Z_{j+1} \right\}$$

$$||A - B||^2 = 1 - \frac{1}{\dim(H)} \operatorname{Re} \operatorname{tr}(A^{\dagger}B)$$

 $||A - B||^2 \in [0, 2]$

$$U_F = e^{-iTH_F}$$
$$\|e^{-iTH_F} - e^{-iT\mathscr{H}_F}\|$$
$$\|e^{-iTH_F} - e^{-iTH_{\rm FM}^{(n)}}\|$$

12 spins, 21 harmonics

Marín Bukov

12 spins, 21 harmonics

 $||A - B||^2 = 1 - \frac{1}{\dim(H)} \operatorname{Re} \operatorname{tr}(A^{\dagger}B)$

