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()= Quantum non-ergodicity: glasses and localization

Glass phases: Frustration and disorder

Fragmentation of phase space: many low energy minima,
separated by very high energy barriers
< Replica symmetry breaking: many extremal pure states
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()= Quantum non-ergodicity: glasses and localization

Glass phases: Frustration and disorder

Fragmentation of phase space: many low energy minima,
separated by very high energy barriers
< Replica symmetry breaking: many extremal pure states
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+ Quantum fluctuations / dynamics?
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(=)= Quantum non-ergodicity: glasses and localization

Glass phases: Frustration and disorder

Fragmentation of phase space: many low energy minima,
separated by very high energy barriers
< Replica symmetry breaking: many extremal pure states

State |l
State IlI

<> Anderson & many-body localization: Disorder + weak tunneling/interaction:
— local moves almost never resonant:

~ O( — no transport, no relaxation

1)
= = $ ~0(1)
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~(==)= Interesting question:

How does a glass phase impact the quantum excitations?

Collective «spin waves» of a quantum glass?
s there localization?

State |l

State IlI
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()= Interesting question:

How does a glass phase impact the quantum excitations?

Collective «spin waves» of a quantum glass?
s there localization?

State |l
State IlI

Localization?
Usually: no - on the contrary!

~ 0(1)
<€ >
$ (1)
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()= The Heisenberg spin glass

Motivation

* [sing glasses well understood (at mean field level):

Classical Sherrington-Kirkpatrick (SK) model;
Quantum SK with transverse field

H=> J;S;S:—T> S

1<J
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()= The Heisenberg spin glass

Motivation

* [sing glasses well understood (at mean field level):

Classical Sherrington-Kirkpatrick (SK) model;
Quantum SK with transverse field

H=> J;S;S:—T> S

1<J

* Much less known about vector spins, both classical and
quantum

H=> Jij(S7S;+S;fSy+SYsY)
i<j
(E.g.: local moments in randomly doped Mott insulators)
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(=)= Sachdev-Ye approach: Can the glass be avoided?

S. Sachdev and J. Ye,
Can the quantum spins form a PRL 70, 3339 (1993)

spin fluid that does not break time- A Georges, O. Parcollet,
and S. Sachdev,

reversal symmetry? PRL 85, 840 (2000); PRB
63, 134406 (2001)

H=> Jij(S7S;+S;Sy+SYsY)

1<J
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(=)= Sachdev-Ye approach: Can the glass be avoided?

S. Sachdev and J. Ye,
Can the quantum spins form a PRL 70, 3339 (1993)

spin fluid that does not break time- A Georges, O. Parcollet,
and S. Sachdev,

reversal symmetry? PRL 85, 840 (2000); PRB
63, 134406 (2001)

<> Random spin chains (D. Fisher ‘85), solvable in 1d:
Spin liquid: random singlet phase, strong disorder fixed point;

What happens in the opposite limit of high connectivity?

H=> Jij(S7S;+S;Sy+SYsY)

1<J
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(=)= Sachdev-Ye approach: Can the glass be avoided?

S. Sachdev and J. Ye,
Can the quantum spins form a PRL 70, 3339 (1993)

spin fluid that does not break time- A Georges, O. Parcollet,
and S. Sachdev,

reversal symmetry? PRL 85, 840 (2000); PRB
63, 134406 (2001)

<> Random spin chains (D. Fisher ‘85), solvable in 1d:
Spin liquid: random singlet phase, strong disorder fixed point;

What happens in the opposite limit of high connectivity?
What is the quantum dynamics in- and outside the glass phase?
1<J
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(=)= Sachdev-Ye approach: Can the glass be avoided?

S. Sachdev and J. Ye,
Can the quantum spins form a PRL 70, 3339 (1993)

spin fluid that does not break time- A Georges, O. Parcollet,
and S. Sachdev,

reversal symmetry? PRL 85, 840 (2000); PRB
63, 134406 (2001)

<> Random spin chains (D. Fisher ‘85), solvable in 1d:
Spin liquid: random singlet phase, strong disorder fixed point;

What happens in the opposite limit of high connectivity?

What is the quantum dynamics in- and outside the glass phase?

Gaussian, all-to-all
=" Jiy(S7S: + ST+ 575Y)
1<J
Goal today: Understand physics of mean field limit & compare with Ising
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(=)= The Heisenberg spin glass

Mean field model

H:—ijgszsg

1<
Classical model Quantum model
(Large S) Non-commuting spin components, S=1/2

S| =1/2 [S?,Sf] = §e*P75,,57
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(=)= The Heisenberg spin glass

Mean field model

'H:—ZJZ'J'S?;'S]'

1<
Classical model Quantum model
(Large S) Non-commuting spin components, S=1/2
_ a bl _ ; « Y
|SZ‘—1/2 [Si,Sj]—ZE 5757;]'57;

Continuous glass transition at T,
T, = JS?/3

Bray, Moore, JPC 14, 2629 (1981).
Gabay, Garel, De Dominicis, JPC 15, 7165 (1982)
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(=)= The Heisenberg spin glass

Mean field model

'H:—ZJZ'J'S?;'S]'

1<
Classical model Quantum model
(Large S) Non-commuting spin components, S=1/2
S| =1/2 (S, 87 = ie*P75,;87
Continuous glass transition at T,
T, = JS?/3 T, ~ J(S?)/3/3
Bray, Moore, JPC 14, 2629 (1981). Bray, Moore, JPC 13, L655-60 (1980).

Gabay, Garel, De Dominicis, JPC 15, 7165 (1982)
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(=)= Sachdev-Ye approach: Can the glass be avoided?

Challenge of quantum spins: Hard to deal with, even in mean field!

S. Sachdev and J. Ye, A. Georges, O. Parcollet,
PRL 70, 3339 (1993) and S. Sachdey,
PRL 85, 840 (2000);
PRB 63, 134406 (2001)

Promote SU(2) spins to SU(M) spins
— solvable in the limit of large M!
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(=)= Sachdev-Ye approach: Can the glass be avoided?

SU(2) — SU(M) spins
1 Solvability in the limit
H:\/NM i<jJijSi.Sj M — oo

S={Sas} 1<a,<M
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(=)= Sachdev-Ye approach: Can the glass be avoided?

SU(2) — SU(M) spins
1 Solvability in the limit
H:\/NM 7;<jJijSi.Sj M — oo

S={Sas} 1<a,<M
Different representations of SU(M) = different models / loc Hilbert space

Abrikosov fermions
Saﬁzflfﬁ
S of Lfa=qoM (0<go=<1)

S. Sachdev and J. Ye (1993)
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(=)= Sachdev-Ye approach: Can the glass be avoided?

SU(2) — SU(M) spins
1 Solvability in the limit
H = JijSi - S;
VNM ; ’ ’ M — oo
S={Sas} 1<a,<M

Different representations of SU(M) = different models / loc Hilbert space

Schwinger bosons Abrikosov fermions
S.s=blbg—56,5 Sap=fofs

S oblbo=SM(0=S) S oftfa=d0M (0<go=<1)
A. Georges, O. Parcollet, S. Sachdev and J. Ye (1993)

and S. Sachdev (2000/01);
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(=)= Sachdev-Ye approach: Can the glass be avoided?

SU(2) — SU(M) spins
1 Solvability in the limit
H = JijSi - S;
VNM ; ’ ’ M — oo
S={Sas} 1<a,<M

Different representations of SU(M) = different models / loc Hilbert space

Schwinger bosons Abrikosov fermions
S.s=blbg—56,5 Sap=fofs

3 ,blb o= SM(0<5) S oftfa=d0M (0<go=<1)
A. Georges, O. Parcollet, S. Sachdev and J. Ye (1993)

and S. Sachdev (2000/01);
— solvable equations for “parton” Green’s functions as M — oo
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(=)= Sachdev-Ye approach

SU(2) — SU(M) spins
1 Solvability in the limit

Spin fluid region: (high T or low spin)

Parton Green’s function ng(r) =—(Tb*(7)b'°(0))

Large-M Dyson equation (G (iv,)=iv, 8+ N8, =35 (iv,),
almost identical for fermions
( ) 2 (N=L16 (NG (=),

GB (r=0")=-S.
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(=)= Sachdev-Ye approach

SU(2) — SU(M) spins
1 Solvability in the limit

Spin fluid region: (high T or low spin)

Parton Green’s function ng(r) =—(Tb*(7)b'°(0))

Large-M Dyson equation (G (iv,)=iv, 8+ N8, =35 (iv,),
almost identical for fermions
( ) 2 (N=L16 (NG (=),

GB (r=0")=-S.

—> X1(D) =(S(1)S(0)) =G, (1G5 (—17)
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(=)= Sachdev-Ye approach

SU(2) — SU(M) spins
1 Solvability in the limit
H:\/NM i<jJijSi.Sj M — oo

Spin fluid region: (high T or low spin)

Parton Green’s function ng(T) =—(Tb*(7)b'°(0))

Large-M Dyson equation (G (iv,)=iv, 8+ N8, =35 (iv,),

almost identical for fermions
( ) 2 (N=L16 (NG (=),

GB (r=0")=-S.

—_— Xloc( T) — <S( T)S(O)> = Gga(T)Gga( - 7')
Gg'(T) ~ 1/(J7)1/2  Very slow decay: Non-Fermi liquid of partons
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(=)= Sachdev-Ye approach

SU(2) — SU(M) spins
1 Solvability in the limit
H:\/WKJ'JMSZWS]. M — ool

Spin fluid region: (high T or low spin)

Parton Green’s function ng(r) =—(Tb*(7)b'°(0))

Large-M Dyson equation (G;)“b(ivn)=ivn5ab+7\“5ab—-2§b(ivn),
almost identical for fermions
( | s PTG -,
B B B
Gga(7'=0_)= —S.
0

1
—> X1 D =(S(1)S(0)) =G (NGg'(=n) ~ 1/(JT)
Gg'(T) ~ 1/(J7)1/2  Very slow decay: Non-Fermi liquid of partons
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(=)= Sachdev-Ye approach

SU(2) — SU(M) spins
1 Solvability in the limit
H:\/Wijijsi'Sj M — ool

—> Model of (constrained) 4-parton interactions
Kitaev (2015): Generalize to random 4-Majorana interactions!

6
Il =iy Z Jijrd iX X1
i<j<k<l

—> SYK model:

» Fast scrambler: saturating bound for

chaos exponent ~ kgT'/h
» Holographically dual to a low dimensional black hole
¢ efc..
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()= Bosonic SU(M)

Phase diagram (large M): Is there a glass transition?

in mean field <> replica symmetry breaking
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()= Bosonic SU(M)

Phase diagram (large M) for bosonic representation

2 ;2
TS ~ —=JS e
& 5
3V3 \ S
6 - , 77 Classical
f /_ regime
5 18
41 ,/2;; Semiclassical
T/J 3 E 1 regime

O NG

/4
g
""" B I N Order parameter

S _ 32
1 2 3 4‘ 5‘1EA_NZ<SZ>

)

PARAMAGNET

Quantum critical regime Quantum spin glass regime

Glass transition: bosons condense
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()= Bosonic SU(M)

Phase diagram (large M) for bosonic representation

TS, J5° T2
33 \ =
6 , 77 Classical
/ s
regime
5 | /_ s
F ///
4 (% /Em;J 7 Semicl‘assical
- T regime
T/ J 3t E /// 5 g g
27 é 4 /(D,,——: \/§
e
1 %I N Order p?rameter
. ‘ . . 2
0 — -
of 1 2 3 4| s5EBAT W Z<SZ>
S i
Quantum critical regime Quantum spin glass regime

Glass transition: bosons condense

Glass transition:
one-step RSB
(dynamic transition
due to phase space
clustering)

Equilibrium states:
gapped; inaccessible

Marginal states:
gapless
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()= Bosonic SU(M)

Phase diagram (large M) for bosonic representation

TS, J5° T2
33 \ =
6 , 77 Classical
/ s
regime
5 | /_ s
F ///
4 % /Em;J 7 Semicl‘assical
- T regime
T/ J 3t E /// 5 g g
2t é 4 ~ /(D,,——: \/§
e
1 %I N Order p?rameter
. ‘ ‘ . 2
0 - .
of 1 2 3 4| s5EBAT W Z<SZ>
S i
Quantum critical regime Quantum spin glass regime

Glass transition: bosons condense
Crossover in dynamics (in gapless marginal states)

Gp(T)Gp(—T) ~ ggA =—> 7 = (w*)7!
Gy (1) ~ 1/(JT)1/?

Glass transition:
one-step RSB
(dynamic transition
due to phase space
clustering)

Equilibrium states:
gapped; inaccessible

Marginal states:
gapless

= (QEA:])_lv
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()= Bosonic SU(M)

Phase diagram (large M) for bosonic representation

2
T~ 3770 \ T Glass transition:
6 ; ' 77 Classical RSB .
5 | % /__ regime One-SteP -
e A8 (dynamic transition
L = e i . )
4 Z @ Semiclassical due to phase space
T/ st 2 < 7 clustering)
ot 5 ,,CL«——: \/§
o IR .
1 § ----- a v Order p?rameter EqU|||br|Um states:
- t n .* _ =+ 32 apped: inaccessible
Yol 1 2 3 4‘ 5‘1EA_NZ<SZ> Japped,
(A
Quantum critical regime Quantum spin glass regime I\/Iarginal states:

- gapless
Glass transition: bosons condense

Crossover in dynamics (in gapless marginal states) Faster decay
Gp(T)G(—T) ~ qggA —>» 71 = (w*)7! = (geaJ)™! typical of MF

G (r) ~ 1Y(IT)? T2 Q(7) = qea ~ 7/ (Jr?)T0 9SS
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()= Bosonic SU(M)

Phase diagram (large M) for bosonic representation

e~ 375"° \ T Glass transition:
6 ; ' 77 Classical .
e one-step RSB
o 8 (dynamic transition
L = e i . )
4 Z @ Semiclassical due to phase space
" regime .
T/ 3¢ = < 7 clustering)
ot < ’,O—““‘: \/§
RL .-.ZR e
1 g ----- % v Order p?rameter EqU|||br|Um states:
- t t .* _ 2 apped: inaccessible
Yol 1 2 3 4‘ 5‘1EA_NZ:<SZ> Japped,
(A
Quantum critical regime Qua,ntum Spin glass regime Marglnal StateS

gapless

<> No glass at all for fermionic representation: too strong
quantum fluctuations for M — oo!
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(7= Fermionic SU(M)

Phase diagram (large M) for fermionic representation

Christos, Haehl, Sachdey,
PRB 105, 085120 (2022)

1/M expansion for
fermions:

Glass phase appears at

T, ~ exp[—cV M]
but with rather different
properties!

<> No glass at all for fermionic representation: too strong
quantum fluctuations for M — oo!
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((I={= Fermionic SU(M)

Phase diagram (large M) for fermionic representation

Christos, Haehl, Sachdey,

PRB 105, 085120 (2022) Glass transition:

Full RSB instability

. (continuous freezing,
1M expansion for no extensive set of

fermions: local minima)

Even equilibrium
states are marginal
and thus gapless

Glass phase appears at
T, ~ exp[—cV M]
but with rather different

properties! — Quantum glass is
a critical phase

<> No glass at all for fermionic representation: too strong
quantum fluctuations for M — oo!
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()= Open questions

Does any of the large M descriptions capture SU(2)?
And if so, how?

Is SYK dynamics found for M = 2? (especially = 1)

Dynamics in the glassy phase?
- Nature of its collective modes / spin waves?

- Difference from Ising case
(where interactions commute)?
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()= Recent progress

N. Kavokine, MM, A. Georges, O. Parcollet,
PRL 133, 016501 (2024)

New answers due to:

 Advanced numerical tools for quantum impurity problems
for SU(2) spins
(cont. time quantum Monte Carlo without sign problem)

* High precision solver for replica symmetry breaking
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()= Self-consistent solution of the MF equations

Classical glass

Lattice problem

Replicas L[~ ®
+ disorder average wu

Local problem

Ultrametric hT Q P(h), q(z)
1), qlx

Qab — <SaSb><—) q(x)

PDE solver

Parisi equations

<S>h, r/ [<S>h>(I(=’E

Self-consistency

——— Classical case
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=)= Self-consistent solution of the MF equations
Magnetization response to a frozen field

2
Classical glass % = —J? % (Vs +2pz(s - V)s)
s(Lh) = S)spm=ms
Lattice problem
by ¥
Replicas s h{
+ disorder average %u

Local problem

Ultrametric hT @ P(h), q(x)
1), qlx

Qab — <SaSb>ﬂ—> q(x)

PDE solver

Parisi equations
(S)n p—1 [S)na(@)]

Self-consistency

——— Classical case
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()= Self-consistent solution of the MF equations

Magnetization response to a frozen field
Os J? dq

. _ Y ¥4 2 .
Classical glass 5 =~ g, (V s+2B(s V)s) —
X
s(1,h) = (S)s,0c(h)= pn - s T
La“:f_’;f_‘__";«m Distribution of frozen fields
5
Replicas s b 2.4 (VP —28zV (s P))
+ disorder average Qu Ox 2 dz
Local probler;1 IP)(O, h) =10 (h)
Ultrametric hT @ P(h), ()
Qab = (SaSp)4— alx) /

PDE solver

Parisi equations

<S>h r/ [<S>ha ( ]

Self-consistency

——— Classical case
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()= Self-consistent solution of the MF equations

Quantum glass

Extra complication: self-consistent dynamic
susceptibility y(t) within every metastable state

2 B
S]oc(h,X) :J?_//O deT’X(T—T’)S(T)-S(T/)

. / " ars(r) Observables
1) — [ ’ - computed with
’ oty ) / continuous time
x() = / dhP(h) (S(0)S(7))s, Quantum Monte
Carlo (CT-QMC)
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()= Self-consistent solution of the MF equations

Quantum glass

Extra complication: self-consistent dynamic
susceptibility y(t) within every metastable state

J2
'Sloc // drdr’'x(r — 7")S(7) - S(7')
Power law
/0

dr S(7), Observables
computed with

s(1,h SS (h < - -
cf. Grempel and (1, h) = (S)s10c(h. / continuous time

Rozenberg, PRL 80,
389 (1998) for x(1) = z / dhP(h) (S(0)S(1))s,. Quantum Monte

paramagnetic regime Carlo (CT-QMC)

interactions in time! ==
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()= Self-consistent solution of the MF equations

Quantum glass

Extra complication: self-consistent dynamic
susceptibility y(t) within every metastable state

J2
Sloc // drdr’'x(r — 7")S(7) - S(7')
Power law
/0

dr S(r), Observables
computed with

s(1,h Ssoch & ; ;
cf. Grempel and (1, h) = (S)s10c(h. / continuous time

Rozenberg, PRL 80,
389 (1998) for x(1) = 2 / dhP(h) (S(0)S(7))s,..(h, - ¢(1) Quantum Monte

paramagnetic regime Carlo (CT-QMC)

interactions in time! ==

Similar technique developped previously for other quantum glasses:
« Bethe lattice quantum Coulomb glass . Lovas et al., Phys. Rev. Res. 4, 023067, 2022
 Transverse field Ising model, A. Kiss, et al., Phys. Rev. B 109, 024431, 2024
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(4 Results

1. Glass transition and Edwards-Anderson order parameter

Continuous transition, with continuous replica symmetry breaking

—o— (assical
—0— Quantum
=== T~T,
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(4 Results

2. Structure of replica symmetry breaking:

(b) . Approach to the plateau gea = q(z — 1)
(1 —q(Bx)/qea(B))

o =0 1—q(z)/qea ~ 1/(Bx)
" a =~ 3(=n) Heisenberg
102é
101-5 —— Classical
—— Quantum
10°=' — . :

10° 101 102



PAUL SCHERRER INSTITUT

(4 Results

2. Structure of replica symmetry breaking:

(b) . Approach to the plateau gea = q(z — 1)
(1 —q(Bx)/qea(B))

10%7 g 1 —q(z)/qea ~ 1/(Bx)"
10°4 a ~ 3(=n) Heisenberg
s >
102 a = 2 (forn = 1)lsing SK
101-5 —— Classical
] — Quantum
100:,. | . |

10° 101 102
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(4 Results

2. Structure of replica symmetry breaking:
(b) Approach to the plateau gea = q(z — 1)

(1 —q(Bx)/qea(B))

10% 1 - q(z)/qea ~ 1/(Bz)*
103 a ~ 3(=n) Heisenberg
102 a = 2 (forn = 1)lsing SK

captures distribution of low energy
10y Glassical states, and hence controls jumps

| — Quantum Am of magnetization in a field ramp
100:"""] . LA A L | . LI LR e z/d

10° 10? 102 p(Am) 1/(Am)

BJx Le Doussal, MM, Wiese ‘10
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(4 Results

2. Structure of replica symmetry breaking:
(b) Approach to the plateau gea = q(z — 1)

. (1 —q(Bx)/qea(B)) -

. 1—q(z)/qea ~ 1/(Bx)"
103 a ~ 3(=n) Heisenberg
102 a = 2 (forn = 1)lsing SK

] captures distribution of low energy
1014 | states, and hence controls jumps

] —— Classical

] — Quantum Am of magnetization in a field ramp
o —— s 2/o

10° 10! 102 p(Am) 1/(Am)
BJx Le Doussal, MM, Wiese ‘10

Vector spins (n = a > 2 ): jumps dominated by large avalanches
Ising spins (a = 2 ): the jumps have a critical power law
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[ Results

2. Structure of replica symmetry breaking:
(b) _ Approach to the plateau gea = q(z — 1)

\ (1 - q(Bx)/qea(B))’ -
i o 1 —q(z)/qea ~ 1/(Bz)°
10°4 a ~ 3(=n) Heisenberg
5 <>
102 a = 2 (forn = 1)lsing SK
] captures distribution of low energy
1014 | states, and hence controls jumps
] —— Classical
| — Quantum Am of magnetization in a field ramp
o ——— s 2/o
10° 10? 102 p(Am) 1/(Am)
BJx Le Doussal, MM, Wiese ‘10
Vector spins (n = a > 2 ): jumps dominated by large avalanches Andreanov, Sharma, MM '14
Ising spins (a = 2 ): the jumps have a critical power law Pazmandi, Zarand, Zimanyi 99

<€—> Avalanche statistics in field ramps at T=0 : Ising spins differ from vector spins!
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[ Results

3. Thermodynamics: internal energy U and specific heat Cy

~0.12 _ § 0248
-- @ - - Classical ® K
4 --@-- Quantum &
'.' B

= -0.16 - ’ =
8 ~ R . E
& | @ K --0.252 €
G [ ) &
D J D
S 02 - ° i 3

- ' "' 4

,"l---' ] ~ T | _0.256
024 [ & el
—V. -1 T T

1 1
0.00 0.02 0.04 0.06 0.08 0.10
T

Classical: intrastate specific heat: Cy =& 1 (Du-Long Petit)
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[ Results

3. Thermodynamics: internal energy U and specific heat Cy

~0.12 _ § 0248
-- @ - - Classical ® K
4 --@-- Quantum &
'.' B

= -0.16 - ’ =
8 ~ R . E
& | @ K --0.252 €
G [ ) &
D J D
S 02 - ° i 3

- ' "' 4

,"l---' ] ~ T | _0.256
024 [ & el
—V. -1 T T

1 1
0.00 0.02 0.04 0.06 0.08 0.10
T

Classical: intrastate specific heat: Cy =& 1 (Du-Long Petit)
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[ Results

3. Thermodynamics: internal energy U and specific heat Cy

-0.12 _ $ 0248
--@ - - Classical ® K
4 --@-- Quantum '3
l.' B

= -0.16 - ’ -
8 ~ R . £
& | R ; --0.252 €
° =
JD s D
S _0.2 = ¢. — S

- "" 4

,i’_.-t' ~Y - -0.256
0204 [ RY T
—V. T |

1 1
0.00 0.02 0.04 0.06 0.08 0.10

T/
Quantum fluctuations harden the spin waves

Like in marginal states of solvable

Compatible with: Cy, ~T° <>
P Y one-step RSB glasses (G. Schehr ‘04,705)
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(= Results

4. Dynamic susceptibility — x(7) = (S;(7)S;:(0)).

: (a)
» Power law at low energy / long time T, e
cutoffat%~T _15-
 Fit to conformal form: % 1.0 -
@ wm( Ly ) 2 /
T) ~ '
d d Sil’l(ﬂ"l’/ﬂ) { g ﬁ/2 — %
0'00.00 .' 0. 50 0. 75 1.5

Iog(sm(nr/B))
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(4 Results

4. Dynamic susceptibility — x(7) = (S;(7)S;:(0)).

» Power law at low energy / long time T,
cut off at % ~T 15 -

e Fit to conformal form:;

log(x(T)/x(B/2))
[
o

o)
2Oy Wz)( sin(z7/f) ) D]

00 " I 1 1 1 1
« Expect for insulating glasses 8;-, = 2 000 D Wl B LD0 Ly La

Read, Sachdev, Ye (95) [Landau exp] - logtsin(re/A)
Christos, Haehl, Sachdev ('22) [M>>1]
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(4 Results

4. Dynamic susceptibility — x(7) = (S;(7)S;:(0)).

2.0

Power law at low energy / long time T, !
ffat = ~T : _ )
cut off at . - \N c o,
) D L9 ‘~‘+\+
Fit to conformal form: g Sy 4 . |
g 1.0 - \+\ 0.00 0.10 0.20
1 o(T) 2 T
(@) ~ x(p/2) O
x(7) ~ . T Ty
sin(zz/p) %2 .
--=- B(T)=2-52xTl|

I I —_ 0.0 T T T T T
EXpethormSUlatmg glasses Or=0 2 0.000 0.025 0.050 0.075 0.100 0.125

Read, Sachdev, Ye ("95) [Landau exp] T/J

Christos, Haehl, Sachdev ('22) [M>>1] Very slow creep toward 6,_, = 2

Similar as in the Quantum Ising SK!
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[ Results

4. Dynamic susceptibility — x(7) = (S;(7)S;:(0)).

2.0

» Power law at low energy / long time T, !
1 \
cutoffat - ~T \ - W,
T 1 = .
| N, .,
* Fit to conformal form: B, 4 L0 .
+ 0.00 0.10 0.20
- VT

S -
~
S~
-

~ -
~ -
Fr
~ -

1 0(T)
x(7) & )((,B/Z)( Ry )

) I I —_— 0.0 T T T T T
EXpethormSUlatmg glasses OrLo 2 0.000 0.025 0.050 0.075 0.100 0.125

Read, Sachdev, Ye ("95) [Landdu exp] TIJ
Christos, Haehl, Sachdev ("22) [M>>1]

---- (M) =2-52%xT/

Very slow creep toward 87—y = 2
Similar as in the Quantum Ising SK!

- Y I'=6=1 Like in marginal states of solvable 1-
Compatible with ~W s
P r(@)~w step RSB glasses (G. Schehr ‘04,°08)...,



PAUL SCHERRER INSTITUT

(4 Results

4. Dynamic susceptibility — x(7) = (Si(7)S:(0)).
Power law at low energy / long time T, 20 3 B
cutoffat = ~ T N A ~~-\.%:$
. ‘ - M*‘ ® H’*“-w.‘ i
Fit to conformal form: = ey o |
g 1.0 - ~.+~. 0.00 0.10 0.20
S e VT
1 O(T) X e
~ y(BI2 s S
x(@) = x(p )( v ﬂ)) 05 - .
---- B(T)=2-5.2x Tl

I I —_ 0.0 T T T T
Expect for insulating glasses 67—y = 2 0.000 0.025 0.050 0.075 0.100

Read, Sachdev, Ye ("95) [Landau exp] T

Christos, Haehl, Sachdev ('22) [M>>1] Very slow creep towar

Similar as in the Qua

T=0 = 2
m Ising SK!

Note: no trace of the SY-K dynamics (8 = 1) above T,~0.14/

Page 63



PAUL SCHERRER INSTITUT

=== Interpreting dynamics and specific heat
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BS Interpreting dynamics and specific heat

 What are the collective modes/spin waves of a quantum spin glass?

A wide open question in finite dimensions!

Mean field: some physical insight is possible

Page 65



RRRRRRRRRRRRRRRRRRRR

BS Interpreting dynamics and specific heat

 What are the collective modes/spin waves of a quantum spin glass?

« What hides behind the super-universal forms of dynamics

X(7) = SO0 ~

x"'(w)~w  (Ohmic spectral function)

and the specific heat scaling
CV ~ 7-3
found in so many (marginal) states of mean field glasses?
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BS Interpreting dynamics and specific heat

 What are the collective modes/spin waves of a quantum spin glass?

« What hides behind the super-universal forms of dynamics

X(7) = SO0 ~

x"'(w)~w  (Ohmic spectral function)

and the specific heat scaling
CV ~ 7-3
found in so many (marginal) states of mean field glasses?

For concreteness and non-trivial predictions:
Consider transverse field Ising SK model
as representative of insulating (non-metallic) spin glasses
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F= Quantum long range spin glasses: Quantum SK model

How does marginal stability affect
quantum dynamics?
Collective modes?
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F= Quantum long range spin glasses: Quantum SK model

How does marginal stability affect
quantum dynamics?
Collective modes?

1.25 @y

Spectral gap closes (Miller, Huse
PRL 1993)

1.00
0.75 |

T/J 0.50

0.25

& remains closed in the glass
phase!

Read, Sachdev, Ye, PRL (1993)

0.00 e
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F= Quantum long range spin glasses: Quantum SK model

How does marginal stability affect
quantum dynamics?
Collective modes?

1.25

Spectral gap closes (Miller, Huse
PRL 1993)

1.00
0.75 |

T/J ﬂﬁﬂl:

0.25

& remains closed in the glass
phase!

Read, Sachdev, Ye, PRL (1993)

A. Andreanov, MM ’11 :
Replica solution:  ** ¢ ﬂ/ .
Gapless Ohmic spectral function:/

X//L(w — () = WLNZIm(Sf(w)S?(_w))lw—’w_ia N B7w
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= Quantum SK model A. Andreanov, MM “11

B

L. Cugliandolo, MM °23 (Review
on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]
cf P. Urbani’s talk !
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)= Quantum SK model A. Andreanov, MM “11
L. Cugliandolo, MM °23 (Review

on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

cf P. Urbani's talk !
Marginally stable energy landscape G'({m; })

2
Minima: gapless semicircular spectrum of Hessian H ;; = oG
5m,5m]
VAL

— Collective harmonic oscillators of mass M ~T~! w=i/M

w2

— plw) ~ T2
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()= Quantum SK model A. Andreanov, MM 11
L. Cugliandolo, MM °23 (Review

on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

cf P. Urbani's talk !
Marginally stable energy landscape G'({m; })

2
Minima: gapless semicircular spectrum of Hessian H ;; = oG
5m,5m]
VAL

— Collective harmonic oscillators of mass M ~T~! w=i/M

w2

— plw) ~ T2

> o,
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)= Quantum SK model A. Andreanov, MM “11

L. Cugliandolo, MM °23 (Review
on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

cf P. Urbani's talk !
Marginally stable energy landscape G'({m; })

2
Minima: gapless semicircular spectrum of Hessian H ;; = oG
5m,5m]
VAL

— Collective harmonic oscillators of mass M ~T~! w=i/M

w2

— p(w) ~ T2

Gapless spectral function

X" (w) ~ 25 p(w)
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)= Quantum SK model A. Andreanov, MM “11

L. Cugliandolo, MM °23 (Review
on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

cf P. Urbani's talk !
Marginally stable energy landscape G'({m; })

2
Minima: gapless semicircular spectrum of Hessian H ;; = oG
5m,5m]
VAL

— Collective harmonic oscillators of mass M ~T~! w=i/M
2
- (x2) = (Mw)™

— p(w) ~ T2

Gapless spectral function

X" (w) ~ 25 p(w)
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)= Quantum SK model A. Andreanov, MM “11

L. Cugliandolo, MM °23 (Review
on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

cf P. Urbani's talk !
Marginally stable energy landscape G'({m; })

2
Minima: gapless semicircular spectrum of Hessian H ;; = oG
5m,5m]
VAL

— Collective harmonic oscillators of mass M ~T~! w=i/M
2

w 2 1
Gapless spectral function Non-trivial check:
T w2 w Independent of
7 9 |
W) ~x,p\wW) ~ ~ —  Q-fluctuation
X ) wP() w ' J? J?2

strength I'!!
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= Quantum SK model A. Andreanov, MM “11

L. Cugliandolo, MM °23 (Review
on Quantum glasses)

Physical interpretation: [applies to ALL insulating meanfield glasses]

cf P. Urbani’s talk !
Marginally stable energy landscape: G({mz})

2
Minima: gapless semicircular spectrum of Hessian H ;; = oG
5m,5m]
VAL
— Collective harmonic oscillators of mass M ~T~! w=i/M
w? (22) = (Mw)™
— ~ ——
plw) ~ 573

Non-trivial check:
Independent of

w ]
// ~ )
Xlsing (w) ~ O.5ﬁ Q-fluctuation
strength I'!!

Gapless spectral function from solving RSB:
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Solution combining RSB and DMFT

T

0.8}

0.4+

RSB

0 L L 1 L 1
0 05 1 156 2 25

hrlJ

ht/J=0.4
ht/J=0.6
ht/J=1

ht/J=1.1
ht/J=1.2
ht/J=1.6
ht/J=1.8
ht/J=2

(a)

 Spectral function independent of small hy =T

= Quantum Ising spin glass: spectral function, soft modes
A. Kiss, G.Zarand, I. Lovas, PRB 109, 024431 (‘24)
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(F=1J= Quantum Ising spin glass: spectral function, soft modes

A. Kiss, G.Zarand, I. Lovas, PRB 109, 024431 (‘24)
Solution combining RSB and DMFT

0.8/
6 ht/J=0.4

04} — h1/J=0.6
RSB —— hrlJ=1
4+ o BEN SOve™ - == htlJ=1.1
0 05 1 15 2 25 s hT/J=12
hrlJ —— hy/J=1.6

T

ht/J=1.8
ht/J=2

(a)

 Spectral function independent of small A =T

« Paramagnet h > h,: gap!

 Glass phase : marginal — everywhere gapless
Substantial spectral transfer to low w
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(=)= Quantum spin glasses: Heisenberg vs Ising

HHb—\/fzjf&JS S <> HISlng FZS —I_—Z iS4 ]

1<J ’L<]
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BS Quantum spin glasses: Heisenberg vs Ising

1 Z Z 1 Z
b \/N7;<j ! ! e p ’ \/Nz‘<j R
W W
Xup (W) = 3.5— Xising (W) ~ 0.5—

‘K / -
The Heisenberg glass is significantly softer than an Ising glass
at equal couplings J;
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(F={J= Open challenge

Slow T-dependence of dynamics?

2.0 —
1.5 ‘*k* ? ?§ “4##*:%#{:*
1 Q(T) % ~’\\+ % 1.0 , +
~ /2 S 1.0 ~ + 0.00 0.T1/0 0.20
7@~ b )( sin(zz/f) ) 5 T /Ty
osd4 T ®
=== B(M=2-52xT/
0.0 . : : , .
: PRCEY : : : , . 0.125
e Mode COUp'IﬂQ and d|SS|pat|On?? 0.000 0.025 0.050 2//075 0.100
- Effective friction induced by finite Very slow creep toward 67— = 2

mode occupation?? Similar as in the quantum Ising (SK)

mean field glass!
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= Melting the quantum spin glassat T=0?

SYK's marginal Fermi liquid from
comes back -
but via a different mechanism
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(=)= Melting the quantum spin glass: doping

Doped Mott insulator:  p= (ny +ny) —1

Z twcchG—I—Uanan ZJWS ‘S,

1j,0="1T,4 1<y

Njg = c;.facw Explicit spin-spin interaction
added (on top of exchange)

a _ 1 —a .
Si T Ciaaaa’czal

U =4t and J = 0.5t

Solve again with selfconsistent mean field method + RSB.

Previous work in the paramagnet. non Fermi liquid,

Planckian relaxation and # ~ 1 close to Q-glass transition!
Dumitrescu, Wentzell, Georges, Parcollet PRB 22
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pa—

(== Melting the quantum spin glass: doping

Doped Mott insulator:  p = (ny +ny) — 1

Z twcwcja-l-UanTnu ZngS ‘S,

17,0="T,{ 1<
050 * Doping p>p.= 0.19 melts the glass

o
o
S

0.3

DOS
at Fermi leve

1.00 +

Exponent 6

0.75 -

1 1 1 1 I
0.000 0.025 0.050 0.075 0.100 0.125 0.15
p

Page 87



PAUL SCHERRER INSTITUT

(=)= Melting the quantum spin glass: doping

Doped Mott insulator:  p = (ny +ny) — 1

Z twcwcja—l-UanTnu ZngS ‘S,

1j,0="T,} 1<J
050 * Doping p>p.= 0.19 melts the glass
§025 * p>0introduces a Fermi surface —

metallic spin glass

o
o
S

0.3

DOS
at Fermi leve

1.00 +

Exponent 6

0.75 -

1 1 1 1 I
0.000 0.025 0.050 0.075 0.100 0.125 0.15
p
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(=)= Melting the quantum spin glass: doping

Doped Mott insulator:  p = (ny +ny) — 1

Z tmccha+UanTnu Zngs ‘S,

1j,0="1T,4 1<y

* Doping p>p.= 0.19 melts the glass
e p>0introduces a Fermi surface —
metallic spin glass
» Landau theory // picture of
Ohmically overdamped random
spin waves both would suggest
X//(w) -~ \/a — w@—l

~> |e, 0 =3/2.

qEA/ Qmax

© ©
N ul
w o

o
o
S

0.3

DOS
at Fermi level

1.00 +

Exponent 6

0.75 -

1 I 1 1 I
0.000 0.025 0.050 0.075 0.100 0.125 0.15
p
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Doped Mott insulator:

p:

(=)= Melting the quantum spin glass: doping

(ny +ny) —1

Z tmcchU+UanTnu Zngs ‘S,

17,0=",4

DOS

1<J

* Doping p>p.= 0.19 melts the glass

e p>0introduces a Fermi surface —
metallic spin glass

» Landau theory // picture of

Ohmically overdamped random
spin waves both would suggest

X' (W) ~ Vw =Wt

1 I 1 1 I
0.000 0.025 0.050 0.075 0.100 0.125 0.15
p

~> je., 0 =3/2.

* Instead, we findo < 1!

Yet slower dynamics! 6(T" — 0) — 17
— Non-Ohmic friction from a
non-Fermi liquid ?7? Page 90
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(F={J=» Self-consistent super-Ohmic bath of oscillators
MM, unpublished

Conjectured scenario for entire metallic glass phase:
Could spin waves constitute a dissipative bath for themselves?

Effective friction of bath of oscillators on given X" (w)

Mo = =—— ~W

oscillator (coupling prop. to doping p [?]) W

0—2
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== Self-consistent super-Ohmic bath of oscillators
MM, unpublished

Conjectured scenario for entire metallic glass phase:
Could spin waves constitute a dissipative bath for themselves?

Effective friction of bath of oscillators on given X" (w)

Mo = =—— ~W

oscillator (coupling prop. to doping p [?]) W

0—2

Typical frequency Ni = —AT = Ay ~ Nw ~ w? !

Mode density p(A) ~ A2 5 pw) ~ 3/20-D1

1

Typical displacement A, (z%) s, typ ~ hw — (2%)w typ ~ —5—
W
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== Self-consistent super-Ohmic bath of oscillators
MM, unpublished

Conjectured scenario for entire metallic glass phase:
Could spin waves constitute a dissipative bath for themselves?

Effective friction of bath of oscillators on given W) g
oscillator (coupling prop. to doping p [?]) o =", 7
Typical frequency Nt = —Ax — Ay ~ Npw ~ w’ 1

Mode density p(N) ~ A2 = p(w) ~ w2011

1

Typical displacement A, (z%) s, typ ~ hw — (2%)w typ ~ —5—
W

— Selfconsistency condition on bath spectral function

1 ! _
() ~ @7 D) (@) iy w7
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(F={J=» Self-consistent super-Ohmic bath of oscillators
MM, unpublished

Conjectured scenario for entire metallic glass phase:
Could spin waves constitute a dissipative bath for themselves?

Effective friction of bath of oscillators on given (w) .
oscillator (coupling prop. to doping p [?]) o =", 7
Typical frequency Nt = —Ax — Ay ~ Npw ~ w’ 1

Mode density p(A) ~ A2 5 pw) ~ 3/20-D1

1

Typical displacement A, (z%) s, typ ~ hw — (2%)w typ ~ —5—
W

— Selfconsistency condition on bath spectral function

1 ! _
X'() ~ 67 () ~ w3

= marginal Fermi liquid exponent,
_ robust in entire metallic glass phasg! ,
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= Open questions

Already at mean field level open questions remain:

- origin of finite T spectral function, creeping of 6(T")

« verification of self-consistently overdamped
oscillators

Even more so in real space:

Collective spin waves:

 Spectral density and spatial structure
« Effect on conductivity (R(T) linearin T?)
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(=)= Wir schaffen Wissen — heute fiir morgen

Summary

» Solution of MF Heisenberg glass:
high precision RSB + CT-QMC

 Rougher landscape than Ising
glasses: vector spins feature large
avalanches upon perturbation

 Dynamics and Cy, evolve slowly
(with T—0) to super-universal
Independent random spin waves

» Doping toward quantum melting:
unexpectedly slow dynamics;
fermions become non-Fermi liquid
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