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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +! !V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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larger than the detuning and the Rabi frequency, the system is mod-
elled by the following spin-1/2 Hamiltonian16,

∑=
=

+ +H PX P (1)
i

L

i i i
1

1 2

where Xi, Yi, Zi are the Pauli operators, L denotes the length of the 
chain and we work in units ħ =  1. In what follows, we use ∣∘⟩  to refer 
the ground state and ∣∙⟩  to refer to the Rydberg state of a single 
atom. The operator Xi =  ∣∘⟩ ⟨∙∣ + ∣∙⟩ ⟨∘∣  creates or removes an exci-
tation at a given site, and projectors = ∣∘⟩ ⟨∘∣Pi  =  (1 −  Zi)/2, written 
in terms of Zi =  ∣∙⟩ ⟨∙∣−∣∘⟩ ⟨∘∣ , ensure that the nearby atoms are not 
simultaneously in the excited state. For example, P1X2P3 acting on 
∣∘∘∘⟩  gives ∣∘∙∘⟩  (and vice versa), while it annihilates any of the con-
figurations ∣∙∘∘⟩ , ∣∘∘∙⟩ , ∣∙∘∙⟩ .

The presence of projectors in the Hamiltonian (equation (1)) 
does not allow for relaxation of several adjacent Rydberg atoms. 
In other words, configurations ∣…∙∙…⟩  are ‘dark states’ breaking 
our chain into two disconnected parts. Hence, such configura-
tions are excluded in what follows and we consider a constrained 
Hilbert space without any adjacent Rydberg atoms. Such a con-
straint makes the Hilbert space identical to that of chains of non-
Abelian Fibonacci anyons, rather than spins-1/2 or fermions. For 
periodic boundary conditions (PBC), the Hilbert space dimension 
is equal to D =  FL−1 +  FL+1, where Fn is the nth Fibonacci number. For 
instance, in the case of the L =  6 chain we have D =  18, as shown in 
Fig. 1. For open boundary conditions (OBC), D scales as FL+2. Thus, 
the Hilbert space is evidently very different from, for example, the  
spin-1

2
 chain where the number of states grows as 2L.

The model in equation (1) is particle–hole symmetric: an opera-
tor = ∏P Zi i anticommutes with the Hamiltonian, PH =  − HP, and 
therefore each eigenstate ψ∣ ⟩  with energy E ≠  0 has a partner ψ∣ ⟩P  
with energy − E. Furthermore, the model has spatial inversion 
symmetry I which maps i →  L −  i +  1. In addition, with PBC, this 
model has translation symmetry. In what follows, unless specified 
otherwise, we restrict ourselves to PBC (thus identifying i =  L +  1 
and i =  1) and explicitly resolve translation and inversion symme-
tries which allow us to fully diagonalize systems of up to L =  32 sites 
(with +D0  =  77,436 states in the zero-momentum inversion-sym-
metric sector).

Experiment25 and numerical simulations on small systems29 
revealed that the relaxation under unitary dynamics specified by 
the Hamiltonian (equation (1)) strongly depends on the initial state 
of the system. In particular, starting from period-2 charge density 
wave states

Z Z∣ ⟩ = ∣∙∘∙∘…⟩ ∣ ⟩ = ∣∘∙∘∙…⟩′, (2)2 2

that are related by a translation by one lattice period, the system 
shows surprising long-time oscillations of local observables for long 
chains of up to L =  51 sites. Although this might suggest that the sys-
tem is non-ergodic, it was also observed that the initial state with all 
atoms in the state ∣∘⟩  shows fast relaxation and no revivals, charac-
teristic of thermalizing systems. Given that the model in equation (1)  
is translation invariant and has no disorder, many-body localization 
cannot be at play. Below we explain the origin of the observed oscil-
lations and the apparent non-ergodic dynamics.

Dynamics
We start by characterizing the dynamical evolution of the model 
in equation (1) for different initial conditions. Motivated by 
experiment25, we consider a family of charge density wave states 
Z∣ ⟩k  =  ∣…∙∘…∘∙…⟩ , where the atoms in excited states are separated 

by k −  1 atoms in the ground state, as well as the fully polarized state 
∣…∘∘∘…⟩ ≡ ∣ ⟩0 . We use the infinite time evolving block decima-
tion (iTEBD) method, which provides results valid in the thermo-
dynamic limit up to some finite time30. The bond dimension used is 
400, which limits the evolution time to t ~ 30.

Figure 2a reveals linear growth of entanglement entropy evalu-
ated for the midpoint bipartition for all considered initial states. 
Yet, the slope of entanglement growth strongly depends on the 
initial state, with the slowest growth observed when the system is 
prepared in the period-2 density wave state, Z∣ ⟩2 , in equation (2).  
In addition, the entanglement growth has weak oscillations on 
top of the linear growth. Relative to the magnitude of entropy, the 
oscillations are most significant for the Z∣ ⟩2  initial state. Figure 2b  
illustrates the oscillations in entanglement by subtracting the lin-
ear component. We note that the oscillations are periodic with 
the period Z ≈ .T 2 35

2
, in agreement with ref. 25. Similarly, periodic 

oscillations are clearly visible in the local correlation function, 
⟨ ⟩+Z Zi i 1  (Fig. 2c). The oscillations that persist for long times when 
the entanglement light-cone reaches a distance of ≳ 20 sites, as evi-
denced by the correlation function, are highly unusual. Although 
experimental work25 presented a variational ansatz capturing these 
oscillations, below we demonstrate that the oscillations actually 
arise due to the existence of special eigenstates within the rest of the 
many-body spectrum.

Special states
The special eigenstates become clearly visible when one arranges 
the entire many-body spectrum according to the overlap with 
the density-wave Z∣ ⟩2  state, as shown in Fig. 3a. This reveals the  
‘Z2-band’ of special eigenstates, which are distinguished by atypically  

0 1 2 3 4 5 6 Dz2

Fig. 1 | The Hilbert space graph of the Fibonacci chain with L!=!6 sites. 
The nodes of the graph label the allowed product states, while the edges 
connect configurations that result from a given product state due to the 
action of the Hamiltonian. Nodes of the graph are grouped according to the 
Hamming distance ZD

2
 from the Z∣ ⟩2  state.
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Fig. 2 | Periodic revivals in the dynamics of entanglement entropy and 
local correlation function. a, Entanglement entropy for the midpoint 
bipartition displays linear growth starting from various initial density-wave 
product states, as well as the fully polarized ∣ ⟩ ∣ ∘∘∘ ⟩= … …0  state. b,c, For 
the Z∣ ⟩2  initial state the entanglement entropy oscillates around the linear 
growth with the same frequency as the local correlation functions.
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The strong, coherent interactions between Rydberg atoms provide 
an effective coherent constraint that prevents simultaneous excitation 
of nearby atoms into Rydberg states. This is the essence of the so-called 
Rydberg blockade15, demonstrated in Fig. 1d. When two atoms are 
sufficiently close that that their Rydberg–Rydberg interactions Vij 
exceed the effective Rabi frequency Ω, multiple Rydberg excitations are 
suppressed. This defines the Rydberg blockade radius Rb, at which 
Vij = Ω (Rb = 9 µm for |r〉 = |70S1/2〉 and Ω = 2π × 2 MHz, as used here). 
In the case of resonant driving of atoms separated by a = 23 µm, we 
observe Rabi oscillations associated with non-interacting atoms (blue 
curve in Fig. 1d). However, the dynamics changes substantially as we 
bring multiple atoms close to each other (a = 2.87 µm < Rb). In this case, 
we observe Rabi oscillations between the ground state and a collective 

state with exactly one excitation ( = / ∑ | … … 〉W N g r g(1 ) i i N1 ) with 
the characteristic N  scaling of the collective Rabi frequency24,28,29. 
These observations enable us to quantify the coherence properties of 
our system (see Methods and Extended Data Fig. 3). In particular, the 
amplitude of Rabi oscillations in Fig. 1d is limited mostly by the state 
detection fidelity (93% for |r〉 and about 98% for |g〉; Methods). The 
individual Rabi frequencies are controlled to better than 3% across the 
array, whereas the coherence time is limited ultimately by the small 
probability of spontaneous emission from the intermediate state |e〉 
during the laser pulse (scattering rate 0.022 µs−1; Methods).

Programmable quantum simulator
In the case of homogeneous coherent coupling considered here, the 
Hamiltonian in equation (1) resembles closely the paradigmatic Ising 
model for effective spin-1/2 particles with variable interaction range. 
Its ground state exhibits a rich variety of many-body phases that break 
distinct spatial symmetries (Fig. 2a). Specifically, at large negative  
values of ∆/Ω, its ground state corresponds to all atoms in the state |g〉, 
corresponding to the paramagnetic or disordered phase. As ∆/Ω is 
increased towards large positive values, the number of atoms in |r〉 
increases and interactions between them become important. This gives 
rise to spatially ordered phases in which Rydberg atoms are arranged 
regularly across the array, resulting in ‘Rydberg crystals’ with different 
spatial symmetries30,31, as illustrated in Fig. 2a. The origin of these 
correlated states can be understood intuitively by first considering the 
situation in which ∆ Ω+ +! ! !V Vi i i i, 1 , 2, that is, with blockade for 
neighbouring atoms but negligible interaction between next-nearest 
neighbours. In this case, the ground state corresponds to a Rydberg 
crystal that breaks Z2 translational symmetry in a manner analogous 
to antiferromagnetic order in magnetic systems. Moreover, by  
tuning the parameters so that ∆ Ω+ + +! ! !V V V,i i i i i i, 1 , 2 , 3 and 

∆ Ω+ + + +! ! !V V V V, ,i i i i i i i i, 1 , 2 , 3 , 4  , we obtain arrays with broken Z3 
and Z4 symmetries, respectively (Fig. 2).

To prepare the system in these phases, we control the detuning ∆(t) 
of the driving lasers dynamically to transform the ground state of the 
Hamiltonian adiabatically from a product state of all atoms in |g〉 to 
crystalline states22,31. In contrast to previous work where Rydberg 
crystals are prepared via a sequence of avoided crossings22,31,32, the 
operation at a finite Ω and well-defined atom separation enables us to 
move across a single phase transition into the desired phase directly33.

In the experiment, we first prepare all atoms in state |g〉 = |5S1/2, F = 2, 
mF = −2〉 by optical pumping. We then switch on the laser fields and 
sweep the two-photon detuning from negative to positive values using 
the functional form shown in Fig. 3a. Figure 2b displays the resulting 
single-atom trajectories in a group of 13 atoms for three different inter-
action strengths as we vary the detuning ∆. In each of these instances, 
we observe a clear transition from the initial state |g1, …, g13〉 to an 
ordered state of different broken symmetry. The distance between the 
atoms determines the interaction strength, which leads to different 
crystalline order for a given final detuning. To achieve Z2 order,  
we arrange the atoms with a spacing of 5.74 µm, which results  
in a measured nearest-neighbour interaction strength (see Extended 
Data Fig. 4) of Ω= π× = π×+ !V 2 24 MHz 2 2 MHzi i, 1 , while the 
next-nearest-neighbour interaction is small (2π × 0.38 MHz). This 
results in a build-up of antiferromagnetic order whereby every other 
trap site is occupied by a Rydberg atom (Z2 order). By reducing the 
spacing between the atoms to 3.57 µm and 2.87 µm, Z3 and Z4 order is 
observed, respectively (Fig. 2b).

We benchmark the performance of the quantum simulator by com-
paring the measured build-up of Z2 order with theoretical predictions 
for a N = 7 atom system, obtained via exact numerical simulations. As 
shown in Fig. 3, this fully coherent simulation without free parameters 
yields excellent agreement with the observed data when the finite detec-
tion fidelity is accounted for. The evolution of the many-body states in 
Fig. 3c shows that we measure the perfect antiferromagnetic state with 
54(4)% probability (here and elsewhere, unless otherwise specified, the 
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Figure 1 | Experimental platform. a, Individual 87Rb atoms (green) are 
trapped using optical tweezers (vertical red beams) and arranged into 
defect-free arrays. Coherent interactions Vij between the atoms (arrows) 
are enabled by exciting them (horizontal blue and red beams) to a  
Rydberg state with strength Ω and detuning ∆ (inset). b, A two-photon 
process couples the ground state |g〉 = |5S1/2, F = 2, mF = −2〉 to the 
Rydberg state |r〉 = |70S1/2, J = 1/2, mJ = −1/2〉 via an intermediate  
state |e〉 = |6P3/2, F = 3, mF = −3〉 with detuning δ, using circularly 
polarized 420-nm and 1,013-nm lasers with single-photon Rabi 
frequencies of ΩB and ΩR, respectively. Typical experimental values are 
δ Ω Ω≈ π× ≈ π×!2 560 MHz ( , ) 2 (60, 36) MHzB R . c, The experimental 
protocol consists of loading the atoms into a tweezer array (1) and then 
rearranging them into a preprogrammed configuration (2). After this, the 
system evolves under U(t) with tunable parameters ∆(t), Ω(t) and Vij. This 
evolution can be implemented in parallel on several non-interacting  
sub-systems (3). We then detect the final state using fluorescence  
imaging (4). Atoms in state |g〉 remain trapped, whereas atoms in state |r〉 
are ejected from the trap and detected as the absence of fluorescence 
(indicated with red circles). d, For resonant driving (∆ = 0), isolated atoms 
(blue circles) display Rabi oscillations between |g〉 and |r〉. Arranging the 
atoms into fully blockaded clusters of N = 2 (green circles) and N = 3  
(red circles) atoms results in only one excitation being shared between the 
atoms in the cluster, while the Rabi frequency is enhanced by N . The 
probability of detecting more than one excitation in the cluster is ≤5%. 
Error bars indicate 68% confidence intervals and are smaller than the 
marker size.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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FIG. 2. (a) Strong violation of the ETH revealed by the eigenstate expectation values 〈OZ〉 ≡ 〈Z1〉, plotted as a function of energy (color
scale indicates the density of data points). While the majority of points are concentrated in the vicinity of the canonical ensemble prediction,
the band of special eigenstates (indicated by crosses) is also clearly visible. For these eigenstates, 〈OZ〉 strongly deviates from the canonical
prediction at the corresponding energy. The system contains L = 30 atoms in the zero-momentum, inversion-symmetric sector. (b) Probability
distribution for the difference in expectation value of the local observable OZ between eigenstates adjacent in energy. Inset: mean !OZ decays
with a power ≈1/3 of the Hilbert space dimension dPBC

L as the system size is increased (shown up to L = 32). Averaging is performed over
eigenstates in an interval between adjacent special states in the middle of the spectrum. The line shown is a linear regression to the three
largest system sizes. (c) Off-diagonal matrix elements are a smooth function of the energy difference. Moreover, f 2(ω) does not depend on the
system size, consistent with the ETH. At the same time, a number of features are visible in f 2(ω) at the frequency coinciding with the energy
separation of special eigenstates in panel (a). The inset shows that f 2(ω), plotted as a function of energy in units of many-body level spacing
!, does not have a well-developed plateau until ω ! !.

In Fig. 2(b) we show the distribution of differences in
the expectation value of OZ between eigenstates adjacent in
energy, !OZ

i = |OZ
i+1,i+1 − OZ

ii |. Consistent with the ETH
prediction, we observe that this distribution narrows around
!OZ = 0 upon increasing the system size. However, despite
fluctuations of !OZ decaying with the system size, this
decay is parametrically slower compared to the standard ETH
prediction. The inset of Fig. 2(b) shows that the mean !OZ

decays approximately as 1/D1/3
0+ whereas the ETH ansatz (7)

would suggest a decay which is inversely proportional to
the square root of the density of states 1/

√
D0+. A recent

study [56] of the same model with OBC also reports the scal-
ing of diagonal matrix elements to be slower than expected
from the ETH. Note, however, that only the few largest system
sizes in Fig. 2(b) appear to be in the scaling regime, which
means that it is possible that the power governing the decay
of the diagonal matrix element converges to 1/2 in larger
systems.

Finally, we test the ETH ansatz for the off-diagonal matrix
elements. Using Eq. (7) we define the average matrix element
at a given energy separation

f 2(ω) = eS(E)〈|〈β|OZ|α〉|2δ(Eα − Eβ − ω)〉α,β , (8)

which is rescaled by the density of states. In what follows,
we refer to f 2(ω) as the infinite-temperature spectral function
since averaging in Eq. (8) is performed over the middle
2/3 eigenstates in the spectrum, denoted by α,β. If the off-
diagonal matrix elements obey the ETH, the function f 2(ω)
ought to be smooth and independent of the system size. This
is indeed confirmed by Fig. 2(c), which shows the collapse of
f 2(ω) for different system sizes. With the previously chosen
normalization for the operator OZ , in Fig. 2(c) we have
multiplied f 2(ω) by L, which yields the best collapse of the
curves within the available system sizes [16,57]. Moreover,
f 2(ω) decays exponentially at large ω, as expected from the
locality of the Hamiltonian [16,58].

Surprisingly, in the intermediate range of frequencies we
observe nonmonotonic behavior of f 2(ω). The positions of

the characteristic features in f 2(ω) coincide with the energy
separation between the ETH-breaking eigenstates in Fig. 2(a).
Such a behavior, to the best of our knowledge, has not been
reported before in the context of translationally invariant
systems without disorder [57]. [Note that Ref. [16] observed
features in the spectral function at energies O(1/L) for a
system of hard-core bosons with dipolar interactions in a
harmonic trap that breaks translational invariance.] In con-
trast, in disordered systems, the emergence of a similar peak
was interpreted as a signature of local resonances [55]. In
addition, the inset of Fig. 2(c) shows that f 2(ω) does not
have a well-developed plateau until ω becomes of the order of
the many-body level spacing ! ∝

√
L/D0+. Such a plateau

is typical of thermalizing systems, and it sets the energy scale
(the Thouless energy) below which the system essentially can
be described by a random matrix ensemble [16].

From the absence of saturation in the matrix elements at
small energies, we expect the level statistics to show devi-
ations from the Wigner-Dyson form. Indeed, previously it
was demonstrated [39] that for small system sizes L ! 28 the
level statistics is approximately described by the semi-Poisson
distribution [59]. This is consistent with the approximately
critical form of f 2(ω) for ω " ! in Fig. 2(c) [55,60]. In
addition, we also expect the level compressibility to be en-
hanced compared to the Wigner-Dyson ensemble. However,
the slow development of the plateau for L " 30 suggests
that both the level statistics and compressibility approach the
Wigner-Dyson ensemble for larger system sizes.

The absence of a Thouless plateau in the off-diagonal
matrix elements, along with the slow decay of fluctuations in
diagonal matrix elements !OZ , and deviations from purely
Wigner-Dyson level statistics, suggests that thermalization of
the bulk of eigenstates in the PXP model may not fully follow
the ETH. We return to the discussion of thermalization in
Sec. V. There we will show that full thermalization is restored,
and the system follows the canonical ETH predictions, once
the PXP model is perturbed in a way that fully destroys the
special bands of eigenstates.
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FIG. 3. (a) Bipartite entanglement entropy of eigenstates S as
a function of energy E. Region A is chosen as one-half of the
chain. The bulk of the states have large volume-law entropy (S ! 5),
however, some outliers with anomalously low entropy (S " 2) are
also visible. These states are labeled by 0, . . . , 7, and they span the
entire energy range between the ground state (state 0) and the middle
of the band (state 7). (b) Density plot showing the joint distribution
of energy and overlap with |Z2〉 product state among the energy
eigenstates. The states with largest overlap are identified with the
low entropy states from the top panel. Data shown are for L = 30
sites in the zero-momentum and inversion-symmetric sector.

B. Entanglement of eigenstates

Quantum entanglement is a complementary probe of ther-
malization and its breakdown, which provides additional in-
sights compared to matrix elements of physical observables.
Equivalence of all observables to their canonical values im-
posed by the ETH implies that the von Neumann entangle-
ment entropy of a subregion A in an eigenstate α, Sα =
−trA(ρα

A ln ρα
A), is equal to the thermodynamic entropy of A

at temperature T which corresponds to the eigenstate energy
Eα . Here, the entanglement of an eigenstate is defined in terms
of its reduced density matrix ρα

A = trB |α〉〈α| that is obtained
by tracing out the degrees of freedom in the complement of
the spatial region A, denoted as B. Thermodynamic entropy
scales proportionally to the volume of region A and is max-
imal in the middle of the band where the density of states is
highest.

Figure 3(a) shows that entanglement entropy S for the
majority of eigenstates exhibits behavior that is consistent
with the predictions of the ETH. Finite-size scaling of states
with large entropy (S ! 5) reveals volume-law scaling S ∝ L
(not shown). However, in addition to the bulk of typical highly
entangled states, we also observe outliers with much lower
entropy. The outlier states with the lowest entanglement,
labeled as 0, . . . , 7 in Fig. 3(a), span the entire bandwidth.

Note that we do not label states at E > 0, as they are related
to states 0, . . . , 7 by particle-hole symmetry.

For even system size L, there are L/2 + 1 special eigen-
states in the zero-momentum sector, and L/2 − 1 such states
in π -momentum sector. Thus, in total, we observe L + 1
special states. These states coincide with the states that max-
imally violate the ETH, depicted by crosses in Fig. 2(a).
Furthermore, as shown in Ref. [39], and as we discuss in more
detail in the following section, these special states can also be
identified as ones that have highest overlap with |Z2〉 product
state defined in Eq. (9) below, as illustrated in Fig. 3(b).

In Sec. IV we present an approach based on forward
scattering, which accurately captures the highly excited eigen-
states with low entropy labeled in Fig. 3. (A brief account of
this approach was presented in Ref. [39].) Within the forward
scattering approximation, we will be able to demonstrate that
these special eigenstates are highly atypical from the entangle-
ment point of view: their entanglement entropy scales with the
logarithm of system size, i.e., S ∝ ln L. This type of behavior,
which is very different from the ETH prediction, is commonly
encountered in ground states of critical systems [61] and
systems with Fermi surfaces [62,63]. Similar phenomenology
is found in recent work [64,65], where exact expressions
for special excited eigenstates in the nonintegrable Affleck-
Kennedy-Lieb-Tasaki (AKLT) model were found.

C. Overlap of special eigenstates with product states

We have demonstrated that the PXP model breaks the
ETH because of the existence of a relatively small (algebraic
in the system size) number of highly atypical, nonthermal
eigenstates. These states are distinguished by anomalous ma-
trix elements of local observables [Fig. 2(a)] as well as by
subthermal entanglement entropy [Fig. 3(a)]. However, there
exist only L + 1 such states embedded among an exponen-
tially many (slowly) thermalizing eigenstates. Hence, naively
one may expect that these states do not have direct physi-
cal relevance, as they might be hidden by the contribution
of a much larger number of typical eigenstates. Below we
show that this is not the case because special eigenstates
have anomalously high overlaps with certain product states.
This implies that superpositions of special eigenstates can be
experimentally prepared and probed using a global quench.
For example, a class of product states which was studied in
recent experiments [36] are the charge-density-wave (CDW)
states

|Zk〉 =
∣∣ . . . •◦ . . . ◦︸ ︷︷ ︸

k

• . . .
〉
, (9)

where the atoms in the excited state are separated by k − 1
atoms in the ground state. In this section we show that the
simplest CDW states, the period-2 (Z2 or Néel) state and the
period-3 (Z3) state, allow one to identify a dominant subset of
special states in the PXP model.

Figure 3(b) shows the squared overlap between all the
eigenstates of the PXP model and |Z2〉 product state on the
logarithmic scale. From this plot, we see that there exists a
set of eigenstates with anomalously large overlap, which form
regular tower structures. The states at the top of towers coin-
cide with the special eigenstates identified via the breakdown
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Ĥ
Shiraishi & Mori - PRL (2017)
Motrunich, Moudgalya, Iadecola, Surace, …

Lin et al. - PRR (2020), Surace et al. - PRB (2021)

Is there a class of systems with robust scars?

GS
GS like

ETH
MB 

scars

Turner et al. Nat. Phys. 2018 + Papic, Moudgalya, Chandran, Iadecola, Müller, …
QUANTUM SCARRED EIGENSTATES IN A RYDBERG ATOM … PHYSICAL REVIEW B 98, 155134 (2018)

0.00 0.05 0.10
|∆Z1|

0

20

40

60

p(
|∆

Z
1
|)

(b) L = 26

L = 28

L = 30

L = 32

104 105

dL

−3

−4

−5

ln
∆

Z
1

[∆Z1] ∼ d−0.34
L

−10 0 10
E

−0.6

−0.5

−0.4

−0.3

〈Z
1
〉

(a)

Canonical

FIG. 2. (a) Strong violation of the ETH revealed by the eigenstate expectation values 〈OZ〉 ≡ 〈Z1〉, plotted as a function of energy (color
scale indicates the density of data points). While the majority of points are concentrated in the vicinity of the canonical ensemble prediction,
the band of special eigenstates (indicated by crosses) is also clearly visible. For these eigenstates, 〈OZ〉 strongly deviates from the canonical
prediction at the corresponding energy. The system contains L = 30 atoms in the zero-momentum, inversion-symmetric sector. (b) Probability
distribution for the difference in expectation value of the local observable OZ between eigenstates adjacent in energy. Inset: mean !OZ decays
with a power ≈1/3 of the Hilbert space dimension dPBC

L as the system size is increased (shown up to L = 32). Averaging is performed over
eigenstates in an interval between adjacent special states in the middle of the spectrum. The line shown is a linear regression to the three
largest system sizes. (c) Off-diagonal matrix elements are a smooth function of the energy difference. Moreover, f 2(ω) does not depend on the
system size, consistent with the ETH. At the same time, a number of features are visible in f 2(ω) at the frequency coinciding with the energy
separation of special eigenstates in panel (a). The inset shows that f 2(ω), plotted as a function of energy in units of many-body level spacing
!, does not have a well-developed plateau until ω ! !.

In Fig. 2(b) we show the distribution of differences in
the expectation value of OZ between eigenstates adjacent in
energy, !OZ

i = |OZ
i+1,i+1 − OZ

ii |. Consistent with the ETH
prediction, we observe that this distribution narrows around
!OZ = 0 upon increasing the system size. However, despite
fluctuations of !OZ decaying with the system size, this
decay is parametrically slower compared to the standard ETH
prediction. The inset of Fig. 2(b) shows that the mean !OZ

decays approximately as 1/D1/3
0+ whereas the ETH ansatz (7)

would suggest a decay which is inversely proportional to
the square root of the density of states 1/

√
D0+. A recent

study [56] of the same model with OBC also reports the scal-
ing of diagonal matrix elements to be slower than expected
from the ETH. Note, however, that only the few largest system
sizes in Fig. 2(b) appear to be in the scaling regime, which
means that it is possible that the power governing the decay
of the diagonal matrix element converges to 1/2 in larger
systems.

Finally, we test the ETH ansatz for the off-diagonal matrix
elements. Using Eq. (7) we define the average matrix element
at a given energy separation

f 2(ω) = eS(E)〈|〈β|OZ|α〉|2δ(Eα − Eβ − ω)〉α,β , (8)

which is rescaled by the density of states. In what follows,
we refer to f 2(ω) as the infinite-temperature spectral function
since averaging in Eq. (8) is performed over the middle
2/3 eigenstates in the spectrum, denoted by α,β. If the off-
diagonal matrix elements obey the ETH, the function f 2(ω)
ought to be smooth and independent of the system size. This
is indeed confirmed by Fig. 2(c), which shows the collapse of
f 2(ω) for different system sizes. With the previously chosen
normalization for the operator OZ , in Fig. 2(c) we have
multiplied f 2(ω) by L, which yields the best collapse of the
curves within the available system sizes [16,57]. Moreover,
f 2(ω) decays exponentially at large ω, as expected from the
locality of the Hamiltonian [16,58].

Surprisingly, in the intermediate range of frequencies we
observe nonmonotonic behavior of f 2(ω). The positions of

the characteristic features in f 2(ω) coincide with the energy
separation between the ETH-breaking eigenstates in Fig. 2(a).
Such a behavior, to the best of our knowledge, has not been
reported before in the context of translationally invariant
systems without disorder [57]. [Note that Ref. [16] observed
features in the spectral function at energies O(1/L) for a
system of hard-core bosons with dipolar interactions in a
harmonic trap that breaks translational invariance.] In con-
trast, in disordered systems, the emergence of a similar peak
was interpreted as a signature of local resonances [55]. In
addition, the inset of Fig. 2(c) shows that f 2(ω) does not
have a well-developed plateau until ω becomes of the order of
the many-body level spacing ! ∝

√
L/D0+. Such a plateau

is typical of thermalizing systems, and it sets the energy scale
(the Thouless energy) below which the system essentially can
be described by a random matrix ensemble [16].

From the absence of saturation in the matrix elements at
small energies, we expect the level statistics to show devi-
ations from the Wigner-Dyson form. Indeed, previously it
was demonstrated [39] that for small system sizes L ! 28 the
level statistics is approximately described by the semi-Poisson
distribution [59]. This is consistent with the approximately
critical form of f 2(ω) for ω " ! in Fig. 2(c) [55,60]. In
addition, we also expect the level compressibility to be en-
hanced compared to the Wigner-Dyson ensemble. However,
the slow development of the plateau for L " 30 suggests
that both the level statistics and compressibility approach the
Wigner-Dyson ensemble for larger system sizes.

The absence of a Thouless plateau in the off-diagonal
matrix elements, along with the slow decay of fluctuations in
diagonal matrix elements !OZ , and deviations from purely
Wigner-Dyson level statistics, suggests that thermalization of
the bulk of eigenstates in the PXP model may not fully follow
the ETH. We return to the discussion of thermalization in
Sec. V. There we will show that full thermalization is restored,
and the system follows the canonical ETH predictions, once
the PXP model is perturbed in a way that fully destroys the
special bands of eigenstates.
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5

- Two level systems (spins 1/2 or “qubits”) 

- Interactions mediated by spatially delocalized degrees of freedom

Jij ∼
J

| i − j |α
Variable-range quantum Ising chain

H = −
L

∑
i<j

Jijsx
i sx

j − h
L

∑
i

sz
i

1 Li

Unusual quantum dynamics: Defenu et al.  Rev. Mod. Phys 2023  
Defenu, Lerose, SP - Phys. Rep. 2024
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iℏ∂t |ψ(t)⟩ = Ĥ |ψ(t)⟩

6

α ≫ 1

( ̂Sx)2

ℏeff ∼ ℏ/L

Semiclassical picture of collective spin squeezing

⃗S(t) ∝ L Thermalization impossible (spin size conserved)⟹

Mean field Dynamics (Solvable)

Ĥα=0 = − J(∑
ij

sx
i sx

j ) − h∑
i

sz
i

̂Sz

α
α = dα = 0

GS and fully polarized states

S = L/2

J = J0/Nα
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α = dα = 0

N = 30, 40, 50
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increase (small error) breaks down at !! 1. For smaller
systems, boundary effects and finite-size effects become
significant, and the linear regime breaks down at larger !.
Note that the change in behavior for large systems at !! 1
can, in a sense, be understood since this marks the point at
which, in the thermodynamic limit, the sum in the interac-
tion term in the Hamiltonian begins to diverge with in-
creasing system size.

We can also identify the regime of linear growth of SvN
by looking at the mutual information between distant spins.
In the upper panel of Fig. 3(d), we plot the time evolution
of the mutual information I1;8, between sites 1 and 8, for
1 " ! " 2 in a system of 20 spins and for B ¼ !J. As a
clear signature of the regime of linear growth of the half-
chain entropy, we find that the mutual information remains
nearly zero for a certain time until it suddenly peaks at a
time corresponding to the arrival of an ‘‘entangling’’ qua-
siparticle pair originally produced on a site between the
two spins. For nearest-neighbor interactions, this arrival
time is consistent with the analytically calculated
Lieb-Robinson velocity (cf. Appendix B), and we find
that the same mechanism still holds for rather long-ranged
interactions of !! 2. In contrast, for the regime of loga-
rithmic growth of SvN, we find a markedly different be-
havior [lower panel of Fig. 3(d)], which is discussed in the
next section.

We emphasize that the fact that the entanglement growth
mechanism is directly reflected in the time dependence of
the mutual information between two distant spins is very
important for experimental observations. Instead of having
to reconstruct 2ðM=2Þ & 2ðM=2Þ density-matrix elements of a
large block via quantum-state tomography, the growth

behavior of the half-chain entropy can be directly verified
by measuring only 4& 4 density matrices for a system of
two composite spins. In Sec. IVB, we will show how the
measurement further simplifies for the particular quench
we consider here.

B. Entanglement dynamics for long-range interactions

In this section, we study the entanglement growth for
very long-range interactions with ! " 1. In this regime,
the picture of entangling quasiparticles that move freely
within a light cone breaks down, and instead distant parts
of the system can become almost instantaneously en-
tangled based on direct interactions. We observe that for
!! 0:8, 0.9, 1, the half-chain entropy can still increase
steadily as a function of time for our quench, but that the
increase becomes logarithmic instead of linear. When fur-
ther increasing the range of interactions for ! & 0:2, we
find a regime where SvN oscillates rapidly around small
values. We understand this behavior via an effective model
in a basis of Dicke states [48] for infinite-range interactions
! ¼ 0.

1. Logarithmic entropy growth

When increasing the range of interactions, eventually
the linear growth of SvN breaks down, and the growth
becomes logarithmic, as shown in Fig. 3(b). For very
long-range interactions, the time scale of the dynamics is
dominated by the interaction-energy term in the
Hamiltonian. Thus, to make a valid comparison, it is
favorable to measure the time in inverse units of the matrix
norm instead of !J. For Hamiltonian (1), we can calculate

(a) (b) (c)

FIG. 3. Entanglement growth after a quantum quench in the transverse Ising model in which algebraically decaying interactions are
introduced suddenly. (a) Time evolution of the half-chain entropy after the quench for B ¼ 1 and varying decay exponents ! ¼ 1:5, 2,
2.5, 3, and 1 (from bottom to top). Solid lines are ED results for M ¼ 20 spins; dashed lines are MPS/MPO results for 50 spins
(converged with MPS bond dimension D ¼ 192). For ! ' 2, the growth is clearly linear and independent of the system size. (b) Time
evolution of 2SvN . Each of the three bundles of lines contains the results for M ¼ 30, 40, and 50 spins and ! ¼ 0:8, 0.9, and 1 (MPS/
MPO simulation, converged with D ¼ 192). On top of the oscillations, the growth is logarithmic (straight line on the exponential
scale). Time is given in units of the inverse Hamiltonian norm, "" (cf. Sec. III B 1). (c) Finite-size scaling of the crossover from linear
SvN growth to a logarithmic one visualized by the error of a linear fit, #fit, in the interval 1< t !J < 3 as a function of ! and M (B ¼ 1,
ED and MPS/MPO simulations, D ¼ 192). For large systems, the crossover occurs around !! 1. (d) Time evolution of the mutual
information between spins 1 and 8, I1;8 (M ¼ 20, B ¼ !J, ED). The upper panel shows results for 2 ' ! ' 1, the lower panel for
1 ' ! ' 0:2. The signature of linear growth of the half-chain entropy is the arrival of a quasiparticle peak after a certain time, whereas
for ! & 1, distant spins become entangled instantaneously.
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well described by the propagation of quasiparticles at a rate
equal to or slower than the Lieb-Robinson bound [42–44].
This leads to a linear increase in bipartite entanglement in
time, so that the dynamics cannot be efficiently computed
in existing classical simulations beyond short times
[16,17]. Interestingly, in this limit, we find that the maxi-
mum growth rate of bipartite entanglement, even in small
systems, occurs when we quench the interaction strength to
the value corresponding to the quantum-phase-transition
point, shifting accordingly for varying !.

For interactions with ! & 1, we observe qualitatively
different behavior. Counterintuitively, quenches above the
critical point for these long-range interactions lead only to
a logarithmic increase of bipartite entanglement in time, so
that in this regime, long-range interactions produce a
slower growth of entanglement than short-range interac-
tions. This can be understood by the fact that the dynamics
is constrained to take place in a small part of the total
available Hilbert space. In particular, in the case of infinite-
range interactions, the system is described by the Lipkin-
Meshkov-Glick (LMG) Hamiltonian [45,46], where the
eigenspace of the model is spanned by relatively few
Dicke states. We show that, in this case, the bipartite
entanglement is bounded by a constant value, which grows
logarithmically with the size of the system. For a large
system size, this can be thought of as a mean-field limit,
where the dynamics is simple to capture with a small
number of basis states.

Finally, we discuss specific experimental parameters for
the realization of different regimes in ion traps with finite
chain lengths, and experimental measurement protocols for
these effects, creating possibilities for the regimes consid-
ered here to be observed in the laboratory. We show that the

crossover from linear to logarithmic entanglement growth
can be observed also for inhomogeneously decaying inter-
actions. Furthermore, we take typical experimental noise
sources into account and show that the observable features
are robust against these. The result that long-range inter-
actions do not always give rise to strong entanglement in
quench dynamics has implications for the realization of
large-scale entanglement in quantum simulations in gen-
eral systems with long-range interactions.
This paper is organized as follows. In Sec. II, we in-

troduce the setup and the model, as well as the entangle-
ment measures we compute. In Sec. III, we show how the
entanglement growth depends on the model parameters
and how the entanglement distribution mechanisms can
be understood. In Sec. IV, we show entanglement growth
for typical experimental parameters with inhomogeneously
decaying interactions and how the entanglement behavior
can be measured in noisy experiments. Finally, in Sec. V,
we provide a conclusion and an outlook.

II. MODEL FOR A QUENCH WITH LONG-RANGE
INTERACTIONS

In this paper, we study the nonequilibrium dynamics of
spatial entanglement in systems with long-range interac-
tions, especially as they are realizable with variable range
in ion traps. In this section, we introduce the long-range
transverse Ising model governing the time evolution, and
the measures of entanglement we compute.

A. Transverse Ising model

We consider the transverse Ising model with long-range
interactions, described by the Hamiltonian

Ĥ ¼
X

i<j

Ji;j"̂
x
i "̂

x
j þ B

X

i

"̂z
i : (1)

Here, the "̂!
i denote the local Pauli matrices (! ¼ x, z), Ji;j

is a general interaction matrix with potentially long-range
interactions, and B is the transverse field. This Hamiltonian
can be realized experimentally, e.g., with a string of
trapped ions that are harmonically confined in a linear
trap, as depicted in Fig. 1. Using two stable (or metastable)
electronic states of these ions as local spin representations
at site i, j "ii and j #ii, it has been shown [23] that one can
use collective couplings of these local states to motional
degrees of freedom of the whole chain to produce the
effective spin model (1) [an example of Ji;j for the ion-
trap experiment, ‘‘case B’’ of Sec. IV, is shown in
Figs. 1(b) and 1(c)]. Note that, throughout this paper, we
will deal with open boundary conditions, which are typical
in ion-chain experiments.
We define the local eigenstates of "̂z

i as j0ii # j #ii and
j1ii # j "ii, with eigenvalues $1 and 1, respectively. We
consider a quench experiment [see Fig. 1(a)], where the
system starts in the fully polarized state jc 0i ¼

QM
i j0ii,

(b)

FIG. 1. (a) Illustration of the quench experiment. We consider
a linear chain of ions (effective spin model) with long-range
interactions. Initially, all spins are fully polarized along the axis
of the magnetic field B. After a time evolution, spatial entangle-
ment entropy (SvN) builds up between blocks of the system.
(b) A typical calculated experimental interaction matrix for 20
ions (see text for further details and parameters). (c) The decay
of the interactions with a tunable decay exponent !. Here, the
grey dots show the mean interactions from diagram (b).
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3.1 Comparison with spin waves for standard quenches
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Figure 8: Entanglement dynamics comparison with spin-waves and the zero mode fluctuations. (Left) ↵ = 0.1. (Right)
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Theory of entanglement entropy dynamics for 
0 ≤ α ≤ d

Lerose and SP - PRR 2020 
Lerose and SP- PRA 2020

NO Semiclassical chaos   
            Slow (log) growth for  
         

⟹ 0 < t ≪ Nβ

Semiclassical chaos   
             Fast (linear) growth for  
         

⟹ 0 < t ≪ log N

Do long-range systems ultimately thermalize?

SvN = − Tr(ρN/2 ln ρN/2)

0
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In this talk:

Long-range interacting quantum spin systems  

 

Robust quantum many-body scars

↕

1.Integrability of the classical limit  (KAM-like) 

2. Sufficiently long-range interactions 

α = 0

0 < α < d

I. Numerical analysis 

II. Analytical theory  

III. New theory predictions
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Numerics: level spacing statistics
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r
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r)

L = 18, Æ = 0.01

Poisson

Wigner Dyson
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r

L = 18, Æ = 0.70

rn =
min(ΔEn+1, ΔEn)
max(ΔEn+1, ΔEn)

Level spacing ratio

Std metric of quantum chaos/ergodicity

Russomanno et al. PRB 2020

Level repulsion for infinitesimal   
quantum ergodicity?

α > 0 ⟹

- chaos: Wigner Dyson 
- Interability: Poisson
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Numerics: individual eigenstates

Collective spin size 
depletion 
δS = L/2 − S

Half-chain 
entanglement 
entropy  
SL/2 = − Tr(ρL/2 ln ρL/2)

    Overlap with 
    spin-coherent 
    state

:  Dicke manifoldδS = 0

8

<latexit sha1_base64="vCUD7L7QhAbzla6z7SZMZ7GINIA=">AAACKHicbVDLSgNBEJz1bXxFPXpwMAiewq74OooieFQwJpCNoXfSxsHZ2WWmVwlJjv6MXvU/vIlXP8EvcDbmoMY6FVXdVHdFqZKWfP/dGxufmJyanpktzM0vLC4Vl1cubZIZgRWRqMTUIrCopMYKSVJYSw1CHCmsRrfHuV+9Q2Nloi+ok2IjhraW11IAOalZXO+FCnRbIT9p6l5YScGY5D40A613td0slvyyPwAfJcGQlNgQZ83iZ9hKRBajJqHA2nrgp9TogiEpFPYLYWYxBXELbaw7qiFG2+gOHunzzcwCJTxFw6XiAxF/bnQhtrYTR24yBrqxf71c/M+rZ3R90OhKnWaEWuRBJN3PeZAVRrqGkLekQSLIL0cuNRdggAiN5CCEEzNX2a/Ae7Add02/4EoK/lYySi63y8Feefd8p3R4NKxrhq2xDbbFArbPDtkpO2MVJtgDe2LP7MV79F69N+/9e3TMG+6ssl/wPr4AjVunqA==</latexit> |�E
n
|�

�|2
<latexit sha1_base64="3yjE80LYJjzQK19x6vQOVvP5jJ0=">AAACD3icdVBLSgNBFOyJvxh/UZduGoPgQkJPMNHsgm5cKhgNJCG86TxNk54P3W+UEHII3eo93Ilbj+A1PIEzYwQVrVVR9R5VlBdpZUmINyc3Mzs3v5BfLCwtr6yuFdc3LmwYG4lNGerQtDywqFWATVKksRUZBN/TeOkNj1P/8gaNVWFwTqMIuz5cB+pKSaBEanUGQLyzx3vFkii7ol4VBzwlNXEoMlKp1wV3yyJDiU1x2iu+d/qhjH0MSGqwtu2KiLpjMKSkxkmhE1uMQA7hGtsJDcBH2x1nfSd8J7ZAIY/QcKV5JuL3jzH41o58L7n0gQb2t5eKf3ntmK4Ou2MVRDFhINMgUhqzICuNSoZA3lcGiSBtjlwFXIIBIjSKg5SJGCfL/Ai8BTtK2kwKyUhfS/D/yUWl7NbK1bP9UuNoOleebbFttstcdsAa7ISdsiaTTLN79sAenTvnyXl2Xj5Pc870Z5P9gPP6AV+pnQY=</latexit> ˆ

FIG. 5. QMBS in the long-range quantum Ising chain. We report full ED numerical energy spectra of the model in Eq. (4)
with L = 18, “ = 1 and h = J0 = 1, restricted to the translation-invariant, parity and spin-flip symmetric sector. Scatter
plot of the observables È”SÍ (row a), half-chain entanglement entropy SL/2(En) (row b), and overlap with the polarized state
|Èø |EnÍ|

2 (row c) of each eigenstate |EnÍ as a function of the energy density En/L. Columns (1-4) correspond to increasing
values of – = 0, 0.2, 0.5, 0.8.

entanglement entropy SL/2 with system size L for – . 1.
In Fig. 6a, we plot È”̂SÍ as a function of L for various
0 < – Æ 1, restricting to the central [(L/4 + 1)-th
in order of energy in the considered symmetry sector]
large-spin eigenstate, with closest energy density to the
infinite-temperature value, En/L ƒ 0. We compute
these quantities up to L = 40. Data for increasing
Nshell are represented by dots with decreasing size.
Convergence is excellent even with very small Nshell for
– . 0.5, while it is slower for larger –. Results strongly
suggest a sublinear scaling of È”̂SÍ with L, consistent
with saturation to a finite value for small –. Data for the
entanglement entropy, shown in Fig. 6b, are consistent
with a logarithmic scaling with system size L. Note
that for each value of L we used the largest Nshell for
which observables are converged. This constrained us to
smaller L for larger –.

These results must be contrasted to the behavior

found for – ∫ 1, where large-spin eigenstates exhibit a
tendency to delocalize through the many-body spectrum.
This is illustrated in Fig. 7. In panel (a) we report the
eigenstates’ spin depletion È”̂SÍEn for – = 3 and L = 16.
While largest-spin eigenstates can still be singled out
(large orange dots), the spin depletion is much larger
than for 0 < – < 1, cf. Fig. 5 row a. Analysis for various
sizes L suggests, furthermore, that the separation
of these eigenstates from the thermal bulk is only a
finite-size e�ect (Fig. 7b). The spin depletion È”̂SÍEn

averaged over the L/2 + 1 eigenstates with smallest
value increases approximately linearly with L for – > 1,
in contrast with the strong suppression found for – < 1.

In summary, we have shown that the numerical energy
spectrum of the long-range quantum Ising chain exhibits
non-thermal features compatible with a QMBS scenario.
The system has a vanishing fraction of eigenstates char-
acterized by a) the depletion from maximal collective

8
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FIG. 5. QMBS in the long-range quantum Ising chain. We report full ED numerical energy spectra of the model in Eq. (4)
with L = 18, “ = 1 and h = J0 = 1, restricted to the translation-invariant, parity and spin-flip symmetric sector. Scatter
plot of the observables È”SÍ (row a), half-chain entanglement entropy SL/2(En) (row b), and overlap with the polarized state
|Èø |EnÍ|

2 (row c) of each eigenstate |EnÍ as a function of the energy density En/L. Columns (1-4) correspond to increasing
values of – = 0, 0.2, 0.5, 0.8.

entanglement entropy SL/2 with system size L for – . 1.
In Fig. 6a, we plot È”̂SÍ as a function of L for various
0 < – Æ 1, restricting to the central [(L/4 + 1)-th
in order of energy in the considered symmetry sector]
large-spin eigenstate, with closest energy density to the
infinite-temperature value, En/L ƒ 0. We compute
these quantities up to L = 40. Data for increasing
Nshell are represented by dots with decreasing size.
Convergence is excellent even with very small Nshell for
– . 0.5, while it is slower for larger –. Results strongly
suggest a sublinear scaling of È”̂SÍ with L, consistent
with saturation to a finite value for small –. Data for the
entanglement entropy, shown in Fig. 6b, are consistent
with a logarithmic scaling with system size L. Note
that for each value of L we used the largest Nshell for
which observables are converged. This constrained us to
smaller L for larger –.

These results must be contrasted to the behavior

found for – ∫ 1, where large-spin eigenstates exhibit a
tendency to delocalize through the many-body spectrum.
This is illustrated in Fig. 7. In panel (a) we report the
eigenstates’ spin depletion È”̂SÍEn for – = 3 and L = 16.
While largest-spin eigenstates can still be singled out
(large orange dots), the spin depletion is much larger
than for 0 < – < 1, cf. Fig. 5 row a. Analysis for various
sizes L suggests, furthermore, that the separation
of these eigenstates from the thermal bulk is only a
finite-size e�ect (Fig. 7b). The spin depletion È”̂SÍEn

averaged over the L/2 + 1 eigenstates with smallest
value increases approximately linearly with L for – > 1,
in contrast with the strong suppression found for – < 1.

In summary, we have shown that the numerical energy
spectrum of the long-range quantum Ising chain exhibits
non-thermal features compatible with a QMBS scenario.
The system has a vanishing fraction of eigenstates char-
acterized by a) the depletion from maximal collective

Large spin eigenstates vs ergodic spectrum?
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Numerics: Dynamics at α = 0.7
Dynamics which strongly depends on the initial state:

Random product : 
fast thermalization

|ψ0⟩

Polarized (coherent) 
: regurrences and 

log EE  
|ψ0⟩
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Daley et al. - PRX 2013, 
Lerose and SP - PRR 2020 
Lerose and SP- PRA 2020

Is it a persistent effect?
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Numerics: scaling with the system size?

Larger  :α

New numerical method

Subleading scaling of  spin depletion

Log scaling of EE

Stability of eigenstates for ?0 < α ≲ 1
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Theory: expansion of the mean-field spectrum

• Large-  semiclassical spectrum:L

EδS,N ∼ L ℰ(n) +ω(n) δN

δS

E0

1

L /2

…

…

δS = L/2 − S

N = 0,1,…,2S

• Quantum numbers:

exponential 
degeneracy in δS

Hα = − J
L

∑
i<j

σx
i σx

j

| i − j |α − h
L

∑
i

σz
i = Hα=0+ Vα

Vα = − J0 ∑
k≠0

f̃k,α(S̃x
kS̃

x
−k + S̃y

kS̃
y
−k)

 part:k ≠ 0

Hα=0 = − J(Sx)2 − gSz

 part:k = 0

Fourier Transform of the couplings
Plots
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↵ < d

+𝒪(L−1)

 collective eigenstates 
labelled by magnon 
occupation

⟹
|{k1, …, kδS

} ; N⟩

+ω̄(n) δS

δS

EδS,δN

δS

⋮

⋮

⋮

⋮

⋮

⋮

⋮⋮⋮

ω

ω̄

Local regular lattice

N = nL/2 + δN
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Intuition for eigenstate localization

⇝

…

…… …

// …… …// ……

<latexit sha1_base64="0RAiAp14bJE+Wpw0dlm9tGKJVpI=">AAACGHicdVDLSgNBEJz1GeMr6tHLYBA8SJgVX7kFRfAkikaFJCy9k1YHZx/M9CphyY/oVf/Dm3j15m/4Be6uEVS0TkVVN1WUH2tlSYg3Z2h4ZHRsvDRRnpyanpmtzM2f2igxEpsy0pE598GiViE2SZHG89ggBL7GM/96N/fPbtBYFYUn1IuxE8BlqC6UBMokrzK756XtLmoC73iVH/S9SlXUXFHfEFs8J5tiWxRkrV4X3K2JAlU2wKFXeW93I5kEGJLUYG3LFTF1UjCkpMZ+uZ1YjEFewyW2MhpCgLaTFsX7fDmxQBGP0XCleSHi948UAmt7gZ9dBkBX9reXi395rYQutjupCuOEMJR5ECmNRZCVRmWLIO8qg0SQN0euQi7BABEaxUHKTEyyiX4E3oLtZW365WykryX4/+R0reZu1jaO1quNncFcJbbIltgKc9kWa7B9dsiaTLKE3bMH9ujcOU/Os/PyeTrkDH4W2A84rx/I+KBq</latexit>

E�S ,N

<latexit sha1_base64="niPQZRci1GtkbvIYIgrr05KQ9nU=">AAACD3icdVBLSgNBFOzxG+Mv6tJNYxBchR4x0eyCblxGNDGQhPCm89TGng/db5Qw5BC61Xu4E7cewWt4AmfGCCpaq6LqPaooL9LKkhBvztT0zOzcfGGhuLi0vLJaWltv2zA2Elsy1KHpeGBRqwBbpEhjJzIIvqfx3Ls+yvzzGzRWhcEZjSLs+3AZqAslgVKp0xuiJhicDkplUXFFvSr2eUZq4kDkZLdeF9ytiBxlNkFzUHrvDUMZ+xiQ1GBt1xUR9RMwpKTGcbEXW4xAXsMldlMagI+2n+R9x3w7tkAhj9BwpXku4vePBHxrR76XXvpAV/a3l4l/ed2YLg76iQqimDCQWRApjXmQlUalQyAfKoNEkDVHrgIuwQARGsVBylSM02V+BN6CHaVtxsV0pK8l+P+kvVtxa5XqyV65cTiZq8A22RbbYS7bZw12zJqsxSTT7J49sEfnznlynp2Xz9MpZ/KzwX7Aef0AjQmdvQ==</latexit>

�S
<latexit sha1_base64="niPQZRci1GtkbvIYIgrr05KQ9nU=">AAACD3icdVBLSgNBFOzxG+Mv6tJNYxBchR4x0eyCblxGNDGQhPCm89TGng/db5Qw5BC61Xu4E7cewWt4AmfGCCpaq6LqPaooL9LKkhBvztT0zOzcfGGhuLi0vLJaWltv2zA2Elsy1KHpeGBRqwBbpEhjJzIIvqfx3Ls+yvzzGzRWhcEZjSLs+3AZqAslgVKp0xuiJhicDkplUXFFvSr2eUZq4kDkZLdeF9ytiBxlNkFzUHrvDUMZ+xiQ1GBt1xUR9RMwpKTGcbEXW4xAXsMldlMagI+2n+R9x3w7tkAhj9BwpXku4vePBHxrR76XXvpAV/a3l4l/ed2YLg76iQqimDCQWRApjXmQlUalQyAfKoNEkDVHrgIuwQARGsVBylSM02V+BN6CHaVtxsV0pK8l+P+kvVtxa5XqyV65cTiZq8A22RbbYS7bZw12zJqsxSTT7J49sEfnznlynp2Xz9MpZ/KzwX7Aef0AjQmdvQ==</latexit>

�S

<latexit sha1_base64="0RAiAp14bJE+Wpw0dlm9tGKJVpI=">AAACGHicdVDLSgNBEJz1GeMr6tHLYBA8SJgVX7kFRfAkikaFJCy9k1YHZx/M9CphyY/oVf/Dm3j15m/4Be6uEVS0TkVVN1WUH2tlSYg3Z2h4ZHRsvDRRnpyanpmtzM2f2igxEpsy0pE598GiViE2SZHG89ggBL7GM/96N/fPbtBYFYUn1IuxE8BlqC6UBMokrzK756XtLmoC73iVH/S9SlXUXFHfEFs8J5tiWxRkrV4X3K2JAlU2wKFXeW93I5kEGJLUYG3LFTF1UjCkpMZ+uZ1YjEFewyW2MhpCgLaTFsX7fDmxQBGP0XCleSHi948UAmt7gZ9dBkBX9reXi395rYQutjupCuOEMJR5ECmNRZCVRmWLIO8qg0SQN0euQi7BABEaxUHKTEyyiX4E3oLtZW365WykryX4/+R0reZu1jaO1quNncFcJbbIltgKc9kWa7B9dsiaTLKE3bMH9ujcOU/Os/PyeTrkDH4W2A84rx/I+KBq</latexit>

E�S ,N

 :Hα≠0

off-resonant creation/destruction of magnon pairs

⇝

…// …… …// ……

<latexit sha1_base64="0RAiAp14bJE+Wpw0dlm9tGKJVpI=">AAACGHicdVDLSgNBEJz1GeMr6tHLYBA8SJgVX7kFRfAkikaFJCy9k1YHZx/M9CphyY/oVf/Dm3j15m/4Be6uEVS0TkVVN1WUH2tlSYg3Z2h4ZHRsvDRRnpyanpmtzM2f2igxEpsy0pE598GiViE2SZHG89ggBL7GM/96N/fPbtBYFYUn1IuxE8BlqC6UBMokrzK756XtLmoC73iVH/S9SlXUXFHfEFs8J5tiWxRkrV4X3K2JAlU2wKFXeW93I5kEGJLUYG3LFTF1UjCkpMZ+uZ1YjEFewyW2MhpCgLaTFsX7fDmxQBGP0XCleSHi948UAmt7gZ9dBkBX9reXi395rYQutjupCuOEMJR5ECmNRZCVRmWLIO8qg0SQN0euQi7BABEaxUHKTEyyiX4E3oLtZW365WykryX4/+R0reZu1jaO1quNncFcJbbIltgKc9kWa7B9dsiaTLKE3bMH9ujcOU/Os/PyeTrkDH4W2A84rx/I+KBq</latexit>

E�S ,N

<latexit sha1_base64="niPQZRci1GtkbvIYIgrr05KQ9nU=">AAACD3icdVBLSgNBFOzxG+Mv6tJNYxBchR4x0eyCblxGNDGQhPCm89TGng/db5Qw5BC61Xu4E7cewWt4AmfGCCpaq6LqPaooL9LKkhBvztT0zOzcfGGhuLi0vLJaWltv2zA2Elsy1KHpeGBRqwBbpEhjJzIIvqfx3Ls+yvzzGzRWhcEZjSLs+3AZqAslgVKp0xuiJhicDkplUXFFvSr2eUZq4kDkZLdeF9ytiBxlNkFzUHrvDUMZ+xiQ1GBt1xUR9RMwpKTGcbEXW4xAXsMldlMagI+2n+R9x3w7tkAhj9BwpXku4vePBHxrR76XXvpAV/a3l4l/ed2YLg76iQqimDCQWRApjXmQlUalQyAfKoNEkDVHrgIuwQARGsVBylSM02V+BN6CHaVtxsV0pK8l+P+kvVtxa5XqyV65cTiZq8A22RbbYS7bZw12zJqsxSTT7J49sEfnznlynp2Xz9MpZ/KzwX7Aef0AjQmdvQ==</latexit>

�S
<latexit sha1_base64="niPQZRci1GtkbvIYIgrr05KQ9nU=">AAACD3icdVBLSgNBFOzxG+Mv6tJNYxBchR4x0eyCblxGNDGQhPCm89TGng/db5Qw5BC61Xu4E7cewWt4AmfGCCpaq6LqPaooL9LKkhBvztT0zOzcfGGhuLi0vLJaWltv2zA2Elsy1KHpeGBRqwBbpEhjJzIIvqfx3Ls+yvzzGzRWhcEZjSLs+3AZqAslgVKp0xuiJhicDkplUXFFvSr2eUZq4kDkZLdeF9ytiBxlNkFzUHrvDUMZ+xiQ1GBt1xUR9RMwpKTGcbEXW4xAXsMldlMagI+2n+R9x3w7tkAhj9BwpXku4vePBHxrR76XXvpAV/a3l4l/ed2YLg76iQqimDCQWRApjXmQlUalQyAfKoNEkDVHrgIuwQARGsVBylSM02V+BN6CHaVtxsV0pK8l+P+kvVtxa5XqyV65cTiZq8A22RbbYS7bZw12zJqsxSTT7J49sEfnznlynp2Xz9MpZ/KzwX7Aef0AjQmdvQ==</latexit>

�S

<latexit sha1_base64="0RAiAp14bJE+Wpw0dlm9tGKJVpI=">AAACGHicdVDLSgNBEJz1GeMr6tHLYBA8SJgVX7kFRfAkikaFJCy9k1YHZx/M9CphyY/oVf/Dm3j15m/4Be6uEVS0TkVVN1WUH2tlSYg3Z2h4ZHRsvDRRnpyanpmtzM2f2igxEpsy0pE598GiViE2SZHG89ggBL7GM/96N/fPbtBYFYUn1IuxE8BlqC6UBMokrzK756XtLmoC73iVH/S9SlXUXFHfEFs8J5tiWxRkrV4X3K2JAlU2wKFXeW93I5kEGJLUYG3LFTF1UjCkpMZ+uZ1YjEFewyW2MhpCgLaTFsX7fDmxQBGP0XCleSHi948UAmt7gZ9dBkBX9reXi395rYQutjupCuOEMJR5ECmNRZCVRmWLIO8qg0SQN0euQi7BABEaxUHKTEyyiX4E3oLtZW365WykryX4/+R0reZu1jaO1quNncFcJbbIltgKc9kWa7B9dsiaTLKE3bMH9ujcOU/Os/PyeTrkDH4W2A84rx/I+KBq</latexit>

E�S ,N

eigenstate localization in subspace 
,   δS ≪ L/2 |δN | ≪ L

1. small  :        

2. Absence of resonances 
(integrable mean-field limit)

α ∑
k≠0

| f̃k(α) |2 ∼ L0

→

Different 
from:

GS
GS like

ETH
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Full calculation

 : Self-consistent eigenstate localization0 < α < d

energy E

//

…

∼ L

1.   : Rotor-magnon Hamiltonian 
interacting quantum impurity model 

α ≠ 0

f̃k(α)

π−π

ω

ω̄……
0

<latexit sha1_base64="mbzWP6YEas/iUVh0F7QP5rNOe3c=">AAACIXicbVDLSgNBEJz1GeMr6kXwMhgEDxJ2xdcx6CXHCOYB2RB6J51kyOyDmV4lLPFn9Kr/4U28iX/hF7iJOZjEOhVV3VR3eZGShmz701pYXFpeWc2sZdc3Nre2czu7VRPGWmBFhCrUdQ8MKhlghSQprEcawfcU1rz+zciv3aM2MgzuaBBh04duIDtSAKVSK7fv9oB4qZW4oKIenHBX+xw7nWErl7cL9hh8njgTkmcTlFu5b7cditjHgIQCYxqOHVEzAU1SKBxm3dhgBKIPXWykNAAfTTMZfzDkR7EBCnmEmkvFxyL+3UjAN2bge+mkD9Qzs95I/M9rxNS5aiYyiGLCQIyCSCocBxmhZVoN8rbUSASjy5HLgAvQQIRachAiFeO0q6nABzCD9JphNi3Jma1knlRPC85F4fz2LF+8ntSVYQfskB0zh12yIiuxMqswwR7ZM3thr9aT9Wa9Wx+/owvWZGePTcH6+gFUnaPO</latexit>

Ĥ↵,e↵

<latexit sha1_base64="pqr+kUBDjHBHkC7twMKMle0GRls=">AAACCHicdVBLTgJBFOzBH+IPdemmIzFxNRkIiu6IblxCIkgCE/KmeWCHnk+632gI4QK61Xu4M269hdfwBM4gJuKnVpWq91KV8iIlDTnOm5VZWFxaXsmu5tbWNza38ts7TRPGWmBDhCrULQ8MKhlggyQpbEUawfcUXnnD89S/ukFtZBhc0ihC14dBIPtSACVSfdjNFxy7VHFOS2X+mxRtZ4oCm6HWzb93eqGIfQxIKDCmXXQicsegSQqFk1wnNhiBGMIA2wkNwEfjjqdFJ/wgNkAhj1BzqfhUxO8fY/CNGflecukDXZufXir+5bVj6p+4YxlEMWEg0iCSCqdBRmiZLIC8JzUSQdocuQy4AA1EqCUHIRIxTiaZC7wFM0raTHLJSF9L8P9Js2QXj+2jerlQPZvNlWV7bJ8dsiKrsCq7YDXWYIIhu2cP7NG6s56sZ+vl8zRjzX522Rys1w8wuJrY</latexit>

k

N̂

<latexit sha1_base64="cBdELDBezEnaoVlVNjeL5EMQlDQ=">AAACWXicdVDLThtBEBwveRg7CU44chlBkHJwrF2iOMnNAgn5aERskLyO1Tu08YjZh2Z6SazV/pZ/gK9AcCUfEAnOjNdxgCTUqVRVre6uIFHSkOuel5ylJ0+fPS8vV6ovXr5aqb1+0zNxqgV2RaxifRiAQSUj7JIkhYeJRggDhQfByc7MPzhFbWQcfaVJgoMQjiM5kgLISsNaB79l0h8D8d38D93PuV/nBW0PMx9UMoa6T/iDMhyN8sK14feL9B3fzYe1Dbex1fziNT/wf4nXcAtstN5eT89OqzedYe2XfxSLNMSIhAJj+p6b0CADTVIozCt+ajABcQLH2Lc0ghDNICs+z/lmaoBinqDmUvFCxPsTGYTGTMLAJkOgsfnbm4n/8/opjT4PMhklKWEkZotIKiwWGaGlrRT5kdRIBLPLkcuIC9BAhFpyEMKKqe34wcLvYCb2mrxiS1o0wR8nva2G12x83LNtbbM5ymyNrbN3zGOfWIu1WYd1mWBTdsmu2M/ShVNyyk5lHnVKv2dW2QM4q7cdK7rG</latexit>

e
iF̂
e
iŜ

Ĥ↵,e↵ e
�iŜ

e
�iF̂<latexit sha1_base64="nzYwA2qT8F5WKvdGioCauARr0pE="></latexit>

= ! N̂ +
X

k 6=0

!k(↵) n̂k

<latexit sha1_base64="moEJ+R5kDNcNGBL2LAhVIBHYi+8="></latexit>

2↵� d for d/2 < ↵ < d

<latexit sha1_base64="dwBjEjERomqXvEj+7PkDqSlrD5s=">AAACDnicdVDJSgNBFOyJW4xb1KOXxiB4CjNBjR6EoBePEcwCyRDedF5ik56F7jdKCPkHvep/eBOv/oK/4Rc4GSMYlzoVVe9RRXmRkoZs+83KzM0vLC5ll3Mrq2vrG/nNrboJYy2wJkIV6qYHBpUMsEaSFDYjjeB7Chve4HziN25QGxkGVzSM0PWhH8ieFECJ1Gh7SMBPO/mCXSyV7ZPSAf9NnKKdosCmqHby7+1uKGIfAxIKjGk5dkTuCDRJoXCca8cGIxAD6GMroQH4aNxRWnfM92IDFPIINZeKpyJ+/xiBb8zQ95JLH+ja/PQm4l9eK6besTuSQRQTBmISRFJhGmSElskOyLtSIxFMmiOXAReggQi15CBEIsbJMDOBt2CGSZtxLhnpawn+P6mXis5R8fDyoFA5m86VZTtsl+0zh5VZhV2wKqsxwQbsnj2wR+vOerKerZfP04w1/dlmM7BePwA69pz+</latexit>

� =
<latexit sha1_base64="6ttAaO78KdWOjTpsOOkvR/c5GS4="></latexit>

0 for 0 < ↵ < d/2{

<latexit sha1_base64="OehziCPZlX/OpQUfx9/uvpf58QE=">AAACHnicdVDLSgNBEJz1GeMrKp68DAbBU9iNGvUmevEgomBUyMbQO2njkNkHM71KWPIvetX/8CZe9Tf8Aicxgs8+VVd1U0UFiZKGXPfVGRoeGR0bz03kJ6emZ2YLc/OnJk61wKqIVazPAzCoZIRVkqTwPNEIYaDwLGjv9fSza9RGxtEJdRKsh9CK5KUUQJZqFBb9JiqCxiH3jQz5wYUfoF0LRbdUrmx7lTX+G3gltz9FNpijRuHNb8YiDTEiocCYmucmVM9AkxQKu3k/NZiAaEMLaxZGEKKpZ/34Xb6SGqCYJ6i5VLxP4tePDEJjOmFgL0OgK/NT65F/abWULrfqmYySlDASPSOSCvtGRmhpe0HelBqJoJccuYy4AA1EqCUHISyZ2qK+Gd6A6dg03bwt6bMJ/j84LZe8SmnjeL24szuoK8eW2DJbZR7bZDtsnx2xKhMsY3fsnj04t86j8+Q8f5wOOYOfBfZtnJd3t1ejCQ==</latexit>

�N ⇠ L�

<latexit sha1_base64="Is4xLsXfSKOFWbJfsv0zgUABEOY=">AAACHXicdVA5TgNBEJzlxlzLkZGMsJCIrF0OAxmChIAABMZIXmP1jhsYefbQTC/IWH4LpPAPMkSK+AYvYGyMhDk6qq7qVpUqTJU05HlvzsDg0PDI6Nh4bmJyanrGnZ07NUmmBZZEohJ9FoJBJWMskSSFZ6lGiEKF5bCx19HL16iNTOITaqZYjeAylhdSAFmq5i4EdVQEtePAyIgfnAch2s3Ne4XV4rZfXOO/gV/wupNnvTmsue9BPRFZhDEJBcZUfC+lags0SaGwnQsygymIBlxixcIYIjTVVjd9my9nBijhKWouFe+S+P2jBZExzSi0lxHQlfmpdci/tEpGF1vVlozTjDAWHSOSCrtGRmhpa0FelxqJoJMcuYy5AA1EqCUHISyZ2Z76DG/ANG2ads6W9NUE/x+crhb8YmHjaD2/s9ura4wtsiW2wny2yXbYPjtkJSbYLbtnD+zRuXOenGfn5fN0wOn9zLO+cV4/AGFrouQ=</latexit> � S
⇠

L
�

1. Write matrix elements around a collective eigenstate 

2. Exactly solvable away from resonances   (spectrum + eigenvectors)ω ≠ pω̄

3. Compute ⟨ ̂δS⟩ ∼ ⟨ ̂δ2
N⟩ ∼ ∑

k≠0

| fk(α) |2 ∼

finite for 0 < α < 1/2 ,
log L for α = 1/2 ,
L2α−1 for 1/2 < α < 1 .

c(α) ⋅ L for α > 1

4. Self-consistency

2. 

3. 

4. 

Self consistent many-body scars for 0 < α ≲ d

15
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Prediction: Instability from mean-field chaos

Ĥα(t) =

−
J0

𝒩α,L

L

∑
j=1

L/2

∑
r=1

̂σx
j ̂σx

j+r

rα
t ∈ [−

T
4

,
T
4 ) mod T

−h
L

∑
j=1

̂σz
j t ∈ [ T

4
,

3
4

T) mod T
Quantum many-body kicked top:  : semiclassical 

integrability-chaos crossover
α = 0 Haake, …

<latexit sha1_base64="vOW/eazQ68aqjJCkwhc3I0VKU7o=">AAACDHicbVBLTgJBFOzxi/hDXbrpSExckRnjh40J0Y1xhYkDJEDIm+aBHXo+6X6jIYQr6Fbv4c649Q5ewxM4M7IQsFaVqvdSlfIiJQ3Z9pe1sLi0vLKaW8uvb2xubRd2dmsmjLVAV4Qq1A0PDCoZoEuSFDYijeB7Cuve4Cr16w+ojQyDOxpG2PahH8ieFECJ5N507Ityp1C0S3YGPk+cCSmyCaqdwnerG4rYx4CEAmOajh1RewSapFA4zrdigxGIAfSxmdAAfDTtUVZ2zA9jAxTyCDWXimci/v0YgW/M0PeSSx/o3sx6qfif14ypV26PZBDFhIFIg0gqzIKM0DJZAXlXaiSCtDlyGXABGohQSw5CJGKczDIV+AhmmLQZ55ORnNlJ5kntuOSclU5vT4qVy8lcObbPDtgRc9g5q7BrVmUuE0yyZ/bCXq0n6816tz5+Txesyc8em4L1+QPLA5ub</latexit>

J0 = 8
<latexit sha1_base64="ImF7sUI1QHOru+zuzohepL3Q6No=">AAACEHicbVBLTgJBFOzBH+IPdemmIzFxRWaMqBsTohvjChP5GJiQN80DO/R80v1GQwiX0K3ew51x6w28hidwBlkIWKtK1XupSnmRkoZs+8vKLCwuLa9kV3Nr6xubW/ntnZoJYy2wKkIV6oYHBpUMsEqSFDYijeB7Cute/zL16w+ojQyDWxpE6PrQC2RXCqBEurtu2/yc28VSO1+wi/YYfJ44E1JgE1Ta+e9WJxSxjwEJBcY0HTsidwiapFA4yrVigxGIPvSwmdAAfDTucFx4xA9iAxTyCDWXio9F/PsxBN+Yge8llz7QvZn1UvE/rxlT98wdyiCKCQORBpFUOA4yQstkCeQdqZEI0ubIZcAFaCBCLTkIkYhxMs1U4COYQdJmlEtGcmYnmSe1o6JzUizdHBfKF5O5smyP7bND5rBTVmZXrMKqTDCfPbMX9mo9WW/Wu/Xxe5qxJj+7bArW5w9jUpxe</latexit>

J0 = 0.5

<latexit sha1_base64="3yjE80LYJjzQK19x6vQOVvP5jJ0=">AAACD3icdVBLSgNBFOyJvxh/UZduGoPgQkJPMNHsgm5cKhgNJCG86TxNk54P3W+UEHII3eo93Ilbj+A1PIEzYwQVrVVR9R5VlBdpZUmINyc3Mzs3v5BfLCwtr6yuFdc3LmwYG4lNGerQtDywqFWATVKksRUZBN/TeOkNj1P/8gaNVWFwTqMIuz5cB+pKSaBEanUGQLyzx3vFkii7ol4VBzwlNXEoMlKp1wV3yyJDiU1x2iu+d/qhjH0MSGqwtu2KiLpjMKSkxkmhE1uMQA7hGtsJDcBH2x1nfSd8J7ZAIY/QcKV5JuL3jzH41o58L7n0gQb2t5eKf3ntmK4Ou2MVRDFhINMgUhqzICuNSoZA3lcGiSBtjlwFXIIBIjSKg5SJGCfL/Ai8BTtK2kwKyUhfS/D/yUWl7NbK1bP9UuNoOleebbFttstcdsAa7ISdsiaTTLN79sAenTvnyXl2Xj5Pc870Z5P9gPP6AV+pnQY=</latexit> ˆ
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Scaling with system size

• Absence of heating for  in classical KAM regime 
• Semiclassical chaos destroyes quantum many-body scarring

0 < α < d
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Prediction: instability at the Excited State Phase Transition

Mean-field criticality at finite energy densities

22

FIG. 12. QMBS hybridization due to an accidental spectral
resonance. Data are shown for the quantum Ising chain with
L = 14, – = 0.7, J0 = 1 and h = 1.01, 1.02 and 1.03. Scatter
plot of the observables È”SÍEn (row a) and entanglement en-
tropy SL/2(En) (row b) of each eigenstate |EnÍ versus energy
density En/L.

shells of Hamiltonians with collective spin-spin interac-
tions. However, accidental resonances may occur for spe-
cific values of model parameters and energy density. In
this case the QMBS are expected to hybridize with the
rest of the spectrum. Observing such rare instances in fi-
nite systems requires a careful search in parameter space.

An example of a fine-tuned resonance is shown in the
middle panel of Fig. 12, where the spin depletion and the
entanglement entropy of each eigenstate are plotted for
the quantum Ising chain Hamiltonian with L = 14 and
– = 0.7. The accidental resonance takes place at h =
1.02J0 (central panel), causing significant hybridization
of one of the QMBS (large orange dots). The spikes in the
spin depletion È”SÍ ƒ 1.2 and entanglement entropy SL/2
for the central scar eigenstate are well visible. This e�ect
disappears upon an slight change in any parameter. This
is illustrated in the two lateral panels of the same Figure,
where we report analogous plots with ¥ 1% variations of
the transverse field, i.e., h/J0 = 1.01 and 1.03.

B. Excited-state quantum phase transitions

In this Section, we discuss another e�ect leading to
instability of QMBS: mean-field criticality at finite en-
ergy density. This happens whenever the classical mean-
field Hamiltonian H has saddle points, which are accom-
panied by isolated unstable trajectories terminating on
them (phase-space separatrices) with diverging period.
These systems are thus characterized by singularities of
the density of states at some finite energy density Ecr/L.
Such mean-field criticality can (but does not necessarily)
result from the spontaneous breaking of a discrete sym-
metry. In this case the critical energy separates ordered

eigenstates (below) from disordered ones (above).
Such excited-state quantum phase transitions (ES-

QPTs) [81] have been discussed at mean-field level, see
also Refs. [107–109]. The accumulation of energy eigen-
values at a given energy density is necessarily associated
with resonances – in the language of Sec. V E one has
Ê(n) = 0. This leads to the failure of eigenstate localiza-
tion theory. We are thus led to conjecture that quantum
many-body chaos develops for – > 0 near the location of
a mean-field ESQPT.

We numerically assess the impact of finite-range inter-
actions on an ESQPT. In Fig. 13 we consider the quan-
tum Ising chain Hamiltonian in Eq. (4) with “ = 1 and
in the ordered phase h < J0. In this range of parameters
the level spacing distribution agrees with Wigner-Dyson
statistics for – > 0, in agreement with the findings of
Refs. [79, 80]. In Fig. 13 we take h = 0.4J0 and – = 0.7
and check the stability of QMBS for L = 14, 16, 18. In
the energy region corresponding to the transition, QMBS
are unstable and hybridize with the rest of the spectrum,
while states well above or below the transition remain
stable. We find indications of scars hybridization even
for small – > 0.

FIG. 13. Fate of the ESQPT for finite-range interactions
– > 0. Scatter plot of the observables È”SÍEn (first row) and
entanglement entropy SL/2(En) (second row) of each eigen-
state |EnÍ versus energy density En/L, for – = 0.7, h = 0.4,
with L = 14, 16, 18 from left to right. The dashed vertical
line indicates the location Ecr/L of the ESQPT in the mean-
field limit – = 0.

Interestingly, we observe that the energy window of
instability of QMBS shows a marked asymmetry, ly-
ing entirely above the mean-field energy density value
Ecr/L associated with the ESQPT (dashed vertical lines
in Fig. 13). This global displacement towards higher en-
ergies can be attributed to finite-size e�ects, as the win-
dow slowly drifts downwards in energy (i.e. leftwards in
the Figure) upon increasing L. However, in the weak cou-
pling regime (small –), one can give an intuitive physical
argument for the persistence of the asymmetry for large

For  associated to 
separatrix trajectories

α = 0

Rev: Cejnar, Strànsky Macek Kloc, J.phys.A 2021
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these systems effectively 
interpolates between few body 

and many-body physics

In summary…
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                                 1) Integrability of the underlying classical limit  2) Long-range interactions
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Ĥ↵,e↵

<latexit sha1_base64="pqr+kUBDjHBHkC7twMKMle0GRls=">AAACCHicdVBLTgJBFOzBH+IPdemmIzFxNRkIiu6IblxCIkgCE/KmeWCHnk+632gI4QK61Xu4M269hdfwBM4gJuKnVpWq91KV8iIlDTnOm5VZWFxaXsmu5tbWNza38ts7TRPGWmBDhCrULQ8MKhlggyQpbEUawfcUXnnD89S/ukFtZBhc0ihC14dBIPtSACVSfdjNFxy7VHFOS2X+mxRtZ4oCm6HWzb93eqGIfQxIKDCmXXQicsegSQqFk1wnNhiBGMIA2wkNwEfjjqdFJ/wgNkAhj1BzqfhUxO8fY/CNGflecukDXZufXir+5bVj6p+4YxlEMWEg0iCSCqdBRmiZLIC8JzUSQdocuQy4AA1EqCUHIRIxTiaZC7wFM0raTHLJSF9L8P9Js2QXj+2jerlQPZvNlWV7bJ8dsiKrsCq7YDXWYIIhu2cP7NG6s56sZ+vl8zRjzX522Rys1w8wuJrY</latexit>
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… many open perspectives
 2) Long-range interactions

fk(α)

π−π

ω

ω̄……
0

<latexit sha1_base64="mbzWP6YEas/iUVh0F7QP5rNOe3c=">AAACIXicbVDLSgNBEJz1GeMr6kXwMhgEDxJ2xdcx6CXHCOYB2RB6J51kyOyDmV4lLPFn9Kr/4U28iX/hF7iJOZjEOhVV3VR3eZGShmz701pYXFpeWc2sZdc3Nre2czu7VRPGWmBFhCrUdQ8MKhlghSQprEcawfcU1rz+zciv3aM2MgzuaBBh04duIDtSAKVSK7fv9oB4qZW4oKIenHBX+xw7nWErl7cL9hh8njgTkmcTlFu5b7cditjHgIQCYxqOHVEzAU1SKBxm3dhgBKIPXWykNAAfTTMZfzDkR7EBCnmEmkvFxyL+3UjAN2bge+mkD9Qzs95I/M9rxNS5aiYyiGLCQIyCSCocBxmhZVoN8rbUSASjy5HLgAvQQIRachAiFeO0q6nABzCD9JphNi3Jma1knlRPC85F4fz2LF+8ntSVYQfskB0zh12yIiuxMqswwR7ZM3thr9aT9Wa9Wx+/owvWZGePTcH6+gFUnaPO</latexit>

Ĥ↵,e↵

<latexit sha1_base64="pqr+kUBDjHBHkC7twMKMle0GRls=">AAACCHicdVBLTgJBFOzBH+IPdemmIzFxNRkIiu6IblxCIkgCE/KmeWCHnk+632gI4QK61Xu4M269hdfwBM4gJuKnVpWq91KV8iIlDTnOm5VZWFxaXsmu5tbWNza38ts7TRPGWmBDhCrULQ8MKhlggyQpbEUawfcUXnnD89S/ukFtZBhc0ihC14dBIPtSACVSfdjNFxy7VHFOS2X+mxRtZ4oCm6HWzb93eqGIfQxIKDCmXXQicsegSQqFk1wnNhiBGMIA2wkNwEfjjqdFJ/wgNkAhj1BzqfhUxO8fY/CNGflecukDXZufXir+5bVj6p+4YxlEMWEg0iCSCqdBRmiZLIC8JzUSQdocuQy4AA1EqCUHIRIxTiaZC7wFM0raTHLJSF9L8P9Js2QXj+2jerlQPZvNlWV7bJ8dsiKrsCq7YDXWYIIhu2cP7NG6s56sZ+vl8zRjzX522Rys1w8wuJrY</latexit>

k

N̂

Lerose, Parolini, Fazio, Abanin and SP, Arxiv 2309.12504

                                 1) Integrability of the underlying classical limit

- Robust Dicke-like states with       Useful metrological applications?α ≠ 0 →

- generalize mechanism to be applied to other systems (PXP)?

- novel analytical method  new numerical approach? →

- Quantum KAM? Instability to many-body perturbations?

- suppressed heating for : time-crystal?0 < α < d


